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Abstract

Fluid-structure interaction problems prove di¢ cult due to the coupling be-

tween �uid and solid behavior. Typically, di¤erent theoretical formulations and

numerical methods are used to solve �uid and structural problems separately. The

least-squares �nite element method is capable of accurately solving both �uid and

structural problems. This capability allows for a simultaneously coupled �uid struc-

ture interaction formulation using a single variational approach to solve complex and

nonlinear aeroelasticity problems. The least-squares �nite element method was com-

pared to commonly used methods for both structures and �uids individually. The

�uid analysis was compared to �nite volume methods and the structural analysis type

compared to traditional Weak Galerkin �nite element methods. The simultaneous

solution method was then applied to aeroelasticity problems with a known solution.

Achieving these results required unique iterative methods to balance each domain�s

or di¤erential equation�s weighting factor within the simultaneous solution scheme.

The scheme required more computational time but it did provide the �rst hands-o¤

method capable of solving complex �uid-structure interaction problems using a si-

multaneous least-squares formulation. A sequential scheme was also examined for

coupled problems.
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LEAST-SQUARES FINITE ELEMENT FORMULATION FOR

FLUID-STRUCTURE INTERACTION

I. Introduction

1.1 Motivation

The joined-wing sensor-craft is a conceptual aircraft based on an Air Force

need for advanced, long-endurance tactical surveillance using current and future

sensor packages [1�3]. A potential vehicle design is a joined-wing con�guration that

could lead to improved radar capabilities, increased aerodynamic performance, and

structural weight savings. Analyses have shown that an example joined-wing con�gu-

ration exhibited large geometric nonlinearity. The nonlinear deformations were larger

than the wing�s panel width when compared to the linear deformations. Nonlinear

analysis was critical to correctly model sensor-craft con�gurations in the past [1].

Figure 1.1 shows a nominal con�guration.

The Air Force Chief of Sta¤ and the Air Force Secretary identify Information

Superiority and Agile Combat Support as two of the Air Force�s six core competen-

Figure 1.1 Sample Joined-Wing Con�guration
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cies [4]. The Air Force Research Laboratory, Air Vehicles Directorate, has identi�ed

Persistent Intelligence, Surveillance, and Reconnaissance (ISR) as one of the corner-

stones of its Future Capabilities Technology Investment that will support these two

core competencies. As an indication of its importance, Persistent ISR was one of

two key areas examined at a recent meeting of Air Force leaders who conducted a

future capabilities assessment [5]. An Air Force report to Congress also stated the

importance of Persistent Integrated ISR,

Currently, ISR assets are limited and can provide persistent coverage
only of selected areas. To meet demands of the war on global terror-
ism, United States Air Force is accelerating development, �elding, and
integration of ISR assets [6].

In pursuit of developing technology to enhance Persistent ISR, as a comple-

ment to its own in-house research, Air Vehicles Directorate initiated contracts in

2001 with Boeing, Lockheed-Martin, and Northrop-Grumman to study sensor-craft

concepts. Those studies identi�ed gust loads as one of the critical structural design

factors [7]. Collaborative research with the Air Force Institute of Technology not

only con�rmed that gust loads were critical, but also demonstrated that nonlinear

deformations were important for accurately capturing the gust response of a joined

wing sensor-craft similar to the Boeing vehicle concept [1, 3, 8]. Whereas the con-

tractor studies neglected nonlinear response, the Air Force Institute of Technology

studies included nonlinearity, but used rather simplistic, equivalent static gust mod-

els. The need for a detailed nonlinear transient gust response was shown in these

studies. A detailed simulation would be useful as a �truth model�in assessing how

adequate the simplistic models are for preliminary design of this type of vehicle.

The joined-wing sensor-craft is considered a �grand-challenge� problem for

Fluid-Structure Interaction (FSI) due to its nonlinear structural and aerodynamic

behavior. Solving such a challenging problem requires a formulation with a number

of unique capabilities:
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1. Time-dependent nonlinear �uid dynamics

2. Time-dependent structures with geometric and follower force nonlinearities

3. Fully-coupled FSI

4. Complex model geometry

5. Time-accurate and complex mesh deformation

6. Accurately account for transient input

7. Arbitrary Lagrangian-Eulerian �uid schemes

It is proposed here that using least-squares �nite elements is a method capable

of accurately handling the above mentioned requirements. The unique approach

of the least-squares approach has not been successfully applied to FSI problems

before. The goal within this research was to show the feasibility of each of these

capabilities and to compare their accuracy to other commonly used methods. These

capabilities, proven to be feasible and accurate, lead to the detailed gust analysis of

the joined-wing sensor-craft.

1.2 The Least-Squares Finite Element Method

The Least-Squares Finite Element Method (LSFEM) has received extensive

consideration in recent years. The method is based on minimizing the L2 norm

of the residuals produced from the �nite element shape function approximation of

systems of di¤erential equations [9]. The weak-form Galerkin approach is commonly

used in standard �nite element formulations. Unfortunately, the Galerkin approach

presents di¢ culties when applied to non-self-adjoint equations in problems such as

�uid dynamics and other transport problems. These di¢ culties include oscillations

and instabilities of the solution and poor approximation of its derivatives [9, 10].

LSFEM has received a great deal of attention recently because of its potential to

avoid these di¢ culties.
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A signi�cant advantage of LSFEM is that its formulation always leads to a

symmetric positive-de�nite system of algebraic equations, even for non-self-adjoint

systems [9]. This o¤ers great advantages from a computational point of view. The

use of robust iterative methods to solve the system of equations developed through

LSFEM becomes possible. In addition, iterative solution techniques such as precon-

ditioned conjugate gradient methods can be implemented without the need of global

assembly. For this method, large-scale problems can be solved using a fully parallel

environment and without the need of global assembly [10�12].

LSFEM has also been shown to provide greater accuracy for the derivatives of

primal variables than traditional �nite elements based on Weak Galerkin methods

[13]. These derivatives, often referred to as secondary variables, are the response

that is most commonly shared between domains for FSI problems. This provides a

distinct reason to use LSFEM in coupled problems.

The accuracy of the secondary variables in the least-squares formulation orig-

inates from the implementation of mixed methods for LSFEM. Mixed methods use

both primal and secondary responses as direct degree of freedom responses. This

increases the total number of system degrees of freedom, but the enhanced accu-

racy and ability to directly share and assemble the secondary degrees of freedom for

coupled problems improves the accuracy at the interface which should improve the

accuracy of the solution overall.

The �nite element method has traditionally been the numerical solution tech-

nique of choice for structural problems. Use of the �nite element method in other

problems, such as �uids, is a subject of great concentration in recent years. Tradi-

tional Weak Galerkin FEM has shown di¢ culty solving some non-structural prob-

lems. Since LSFEM may handle �uid and transport problems with fewer issues, the

�nite element method, based on least-squares, may be used as a numerical approxi-

mation technique for a wide range of problems.
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The Weak Galerkin FEM has long been considered the traditional �nite ele-

ment method of choice because of its high solution accuracy and its low di¤erentia-

bility requirements on its shape functions. A Strong Galerkin approach is not as

commonly used because it requires full di¤erentiability of the shape functions. For

example, a fourth-order di¤erential equation would require shape functions that are

fourth-order di¤erentiable for a Strong Galerkin approach whereas a Weak Galerkin

approach would only require that the shape functions are second-order di¤erentiable.

This reduction in di¤erentiability requirements is because the Weak Galerkin ap-

proach applies integration by parts to the original Galerkin functional. In addition,

the integration by parts, which results in the Weak Galerkin method, conveniently

results in the Raleigh Ritz method using the Principle of Minimum Potential En-

ergy [13].

Least-squares �nite-elements were examined intensely in the 1970s [14]. For

a period after that, least-squares �nite elements were not a commonly used formu-

lation. The method did not receive more consideration until recent years. This

was mainly because of the realization that the higher polynomial order of the �nite

element shape functions is an essential part of using LSFEM [9,15�18]. The use of

higher-order p-elements resolved the main concerns raised in the 1970s.

1.3 Simultaneously Coupled Fluid-Structure Interaction

Bendiksen has shown, with conclusive results, that a loosely-coupled FSI scheme

produces time lag errors that add with each iteration [19]. These errors are typically

avoided by a �ner mesh or through a very small time step. He showed that this

produces slow convergence and that large errors still exist for some problems with

complex geometries or complex �uid �ow dynamics. Bendiksen was able to solve

such problems using a simultaneously coupled scheme with relatively coarse meshes

and larger time steps [19]. This improvement in convergence and accuracy is a

signi�cant advantage of the simultaneously coupled scheme.
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The nature of LSFEM makes it a methodology that can be easily implemented

into a simultaneously coupled scheme (also called directly-coupled [20], tightly-

coupled [21], or monolithic [22]). Since LSFEM can be used for the �uid domain,

the structural domain, the mesh deformation domain, and even the interface condi-

tions, it provides a method to solve a coupled problem using the same variational

principle.

1.4 Research Goals

The problem statement that summarizes the core objective of this research is:

Compare the least-squares �nite element method to other commonly
used methods and implement the least-squares �nite element formulation
for complex, simultaneously coupled FSI problems.

To accomplish this core objective, this research was split into two main goals:

1. Compare the least-squares �nite element method to other common numerical

methods such as �nite di¤erencing and Weak Galerkin �nite elements and

compare the simultaneously coupled �uid structure interaction method to a

sequentially coupled method.

2. Demonstrate each unique capability required to accomplish a transient gust

scenario for the joined-wing sensor-craft.

The �rst research goal provided a "proof of technology" for the least-squares

�nite element method in the context of FSI. The second research goal used a chal-

lenging problem to show that the simultaneously coupled �uid structure interaction

method is applicable to a complex problem using LSFEM.

1.5 Research Contributions

The work completed here had new and unique aspects relevant to the aerospace

research community. Very little work has been completed using least-squares �-

nite elements for FSI problems. Also, very little work has been completed using
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simultaneous solution methods for FSI problems. In fact, no success has been pre-

viously observed for nonlinear FSI problems with mesh deformation using LSFEM.

Speci�cally, no one has previously implemented compressible Euler �uid analysis in

the simultaneously coupled LSFEM FSI. For the single previous attempt to ap-

ply simultaneous LSFEM to FSI, there was great di¢ cultly and inaccuracies shown

when using LSFEM for both the �uid and structural domain for a simultaneously

coupled solution [23, 24]. The simultaneously coupled LSFEM exhibited extensive

problems with respect to the residual weighting scheme both by Kayser-Herold and

Matthies [23, 24] and the current e¤ort. In addition, very low accuracy has been

observed for transient structural problems when using LSFEM [23, 24]. A unique

residual weighting scheme was proposed and used within this research. The method

was successful for some LSFEM FSI problems. The work contained in this disserta-

tion examined and corrected many of the issues surrounding the LSFEM structural

problems observed by Kayser-Herold and Matthies.

1.6 Overview of Remaining Chapters

The second chapter in this document provides short descriptions of other work

that has been completed in LSFEM and FSI. Other relevant work such as mesh

deformation, nonconformal meshes, and mixed �nite elements is also discussed here.

The third chapter presents the theory behind �nite element methods. This includes

both least-squares and Weak Galerkin �nite element methods. Unique considera-

tions for higher-order polynomial shape functions are discussed. The fourth chapter

applies the theory of least-squares and Weak Galerkin �nite element methods to

structural problems in two-dimensions. Both transient and steady-state equations

and problems are examined. The �fth chapter reviews the theory and applica-

tion of using LSFEM for �uid dynamics problems. Arbitrary Lagrangian-Eulerian

methods are also discussed. The sixth chapter covers the theory and methodology

of �uid-structure interaction when considering simultaneous or sequential LSFEM

1-7



formulations. The seventh chapter covers problems related to steady-state FSI

problems, including residual weighting methods. An iterative residual balancing

scheme is introduced and shown to be practical here. The eighth chapter applies

the LSFEM FSI methodology to transient FSI problems with nonlinear properties.

The ninth chapter provides conclusions that were drawn from this work and suggests

future work to be completed within the �eld of LSFEM and work to be completed

to solve the transient joined-wing sensor-craft gust scenario.
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II. Background

2.1 Least-Squares Finite Elements

Eason performed a survey of published work in the �eld of least-squares for

solving partial di¤erential equations in 1976. He concluded that least-squares pro-

vides a solid framework for solving a wide variety of problems to include structures,

aerodynamics and transport problems. LSFEM provides theoretical and computa-

tional advantages in the implementation of �nite element models over those based

on the weak-form Galerkin method. The weak-form Galerkin approach is commonly

used in standard �nite element formulations. Unfortunately, the Galerkin approach

presents di¢ culties when applied to non-self-adjoint equations in problems such as

�uid dynamics and other transport problems. These di¢ culties include oscillations

and instabilities of the solution and poor approximation of its derivatives [9, 10].

LSFEM has been shown to avoid these di¢ culties for non-self-adjoint equations.

LSFEM provides great �exibility in developing the di¤erential equation formulation

for many types of analysis. Another signi�cant advantage of LSFEM is that its for-

mulation always leads to a symmetric positive-de�nite system of algebraic equations

even for non-self adjoint systems [9]. This o¤ers a computational advantage. The

use of robust iterative methods to solve the system of equations developed through

LSFEM becomes possible. In addition, iterative solution techniques such as precon-

ditioned conjugate gradient methods can be implemented without the need of global

assembly. For this method, large-scale problems can be solved using a fully parallel

environment and without the need of global assembly [10�12]. LSFEM has also

been shown to provide greater accuracy for the derivatives of primal variables than

traditional �nite elements based on Weak Galerkin methods [13]. These derivatives,

often referred to as secondary variables, are the response that is most commonly

shared between domains for FSI problems. This provides a distinct reason to use

LSFEM in coupled problems. LSFEM automatically supplies an error indicator in
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the form of the residuals that are minimized by the procedure [14]. The accuracy

of the secondary variables in the least-squares formulation originates from the im-

plementation of mixed methods for LSFEM. Mixed methods use both primal and

secondary responses as direct degree of freedom responses. This increases the to-

tal number of system degrees of freedom, but the enhanced accuracy and ability to

directly share and assemble the secondary degrees of freedom at the interface for

coupled problems must also be factored.

A gap in least-squares work was observed between Eason�s survey paper (1976)

until the 2000s. Eason noted that least-squares exhibited poor accuracy for some

problems. More importantly convergence rates did not consistently meet theoretical

criteria nor would solutions converge to their exact answer despite re�ning mesh

size. He mentioned that least-squares convergence is purely problem dependent [14].

This problem was not resolved until two decades later when Pontaza and Reddy

discovered how critical the element polynomial order (p-value) was when considering

least-squares formulations.

Pontaza and Reddy [17] found that p-re�nement provides better results and

results that properly converge to a correct result when using LSFEM. p-re�nement

involves increasing the polynomial order of the approximation functions (see Equa-

tion 3.17) in order to improve the solution. Low-order nodal expansions have been

used commonly in the past. These types of expansions may easily exhibit locking

mechanisms in LSFEM. Reduced order integration is often used to resolve these prob-

lems [9]. Higher-order expansions can prevent locking altogether [17]. p-re�nement

was examined in this study. The results showed very high sensitivity to the element

p-value. It was also shown, in this dissertation, that residual weight balancing is

essential in generating proper accuracy for some types of analysis, such as transient

elasticity and multi-domain problem.

Pontaza and Reddy also published several papers discussing the LSFEM for-

mulation for several di¤erent types of problems. They showed formulations for
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shells [15, 16], plates [18], and the Navier-Stokes equations [17]. Their papers pro-

vided the foundation necessary to build the least-squares methodology described

here.

2.2 Simultaneously Coupled Fluid-Structure Interaction

Bendiksen performed a survey of the main challenges in computational aeroelas-

ticity. He proposed that the direct Eulerian-Lagrangian computational scheme is a

consistent and e¢ cient method to couple the �uid-structure problem. This treats

the problem as a single dynamic system. It eliminates the virtual surface at the

boundary and eliminates phase integration errors typically observed using classical

methods [19].

He noted that a loosely-coupled FSI scheme produces time lag errors that add

with each iteration. These errors are typically avoided by a �ner mesh or through

a very small time step. Bendiksen showed that this produces slow convergence and

that large errors still exist for some problems with complex geometries or complex

�uid �ow dynamics. Bendiksen was able to solve problems using his fully-coupled

scheme with relatively coarse meshes with a smaller time steps [19]. This is a signif-

icant advantage of the fully-coupled scheme. Even though the structural problem

was solved as many times as the �uid problem, the overall computation time was

much less than when loosely coupled.

Bendiksen also noted that some modern aeroelastic problems use millions of

degrees of freedom for the �uid domain but only dozens of degrees of freedom for

the structural domain. He noted that the structure problem is not less important.

Previous problems were successful with a low number of degrees of freedom for the

structural domain because simple geometries were used. He mentioned that for

advanced problems that include complex geometries or higher-level �uid problems,

such as transonic �ow, a higher number of structural degrees of freedom are required

[19].
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Hübner et al. used a monolithic �nite element approach to FSI problems [22].

They used �nite elements for both domains. Viscous �uid di¤erential equations were

used to approximate the �uid behavior and nonlinear structural properties in their

FSI problems. Their method exhibited strong convergence properties for coupled

problems with strong interaction characteristics. The study used traditional �nite

element methods with simultaneous solution techniques instead of a loosely-coupled

sequential technique. This produced ill-conditioned matrices with zero entries on

the diagonal, requiring a stronger solver. LSFEM is a method that will avoid ill-

conditioned system matrices completely.

Sequential solution methods have shown good accuracy for most steady state

problems and only for transient problems when a small enough time step is used

[19]. Some have implemented unique schemes to alleviate di¢ culties observed when

accurate sequential methods are desired without the need for a very small time

step [25,26].

Jaiman et al. applied a loosely-coupled sequential scheme for transient FSI

problems using Combined Interface Boundary Conditions (CIBC). It improves the

in�uence of the boundary interface for both the velocity and momentum �uxes.

CIBC provides a correction factor to the boundary interface terms such that each

domain can be solved in a staggered manner, or rather a sequential manner [25]. A

corrected velocity �eld for the �uid velocity (vf) is corrected using both the structural

interface velocity vs and some correction factor �v�n based on the previous time step

vfn+1 = vsn+1 + �v�n (2.1)

The corrected structural momentum�ux P s is corrected using both the �uid interface

momentum �ux P f and some correction factor �P �n

P s
n+1 = P f

n+1 + �P �n+1 (2.2)
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The correction factors are de�ned by

�v�n = �t

��
@P f

@nf

�n
� wc

�fn

��
@P f

@t

�n
�
�
@P s

@t

�n��
on �s (2.3)

�P �n = �t

"
�
�
@P s

@t

�n+1
+
1

wc

(�
�f
@vs

@t

�n+1
�
�
@P f

@nf

�n+1)#
on �s (2.4)

where wc is a positive coupling parameter used to ensure dimensional consistency.

Crivelli and Farhat have applied Finite Element Tearing and Interconnecting

(FETI) to improve boundary interaction characteristics. They did so those in-

teraction e¤ects were properly implemented into the sequential solution. FETI is

based on a hybrid variational principle that allows the computing of the incomplete

subdomain displacement �elds and can extract the dual tractions at the subdomain

interfaces [26]. Each global domain can be split into several subdomains

f
sgNss=1 (2.5)

where a neighboring domain to 
s is de�ned as 
q where the interface conditions

are matched weakly at each neighboring domain interface �s;q. This method can be

used within any primary domain such as a structure domain split into several sub-

domains or within an FSI problem split between the �uid and structure domains.

They observed great e¢ ciency and convergence properties in a parallel computing

environment using this method for both a single global domain type or within a

multiple domain type such as FSI. Convergence was improved since each subdomain

will have slow and fast convergence properties. Those subdomains that converge

quickly require fewer nonlinear subiterations within each time step. In order to

help improve overall convergence and interface accuracy, the interface conditions are

smoothed through an advancing half time step using

vsn+1 = vs
n+ 1

2
+
�t

2

@v

@t

s

n+ 1
2

(2.6)
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This time integration method is used subdomain by subdomain.

FETI and CIBC allow for larger time steps when using a sequential approach

while still maintaining accuracy for either steady-state or transient problems.

2.3 Simultaneously Coupled Fluid-Structure Interaction Using Least Squares Finite

Elements

Kayser-Herold and Matthies [23, 24] were the �rst to complete extensive re-

search on a uni�ed least-squares approach to FSI problems. They considered both

steady-state and transient cases. While LSFEM was accurate for �uids, they did

show di¢ culty in handling transient structural problems. Instabilities were observed

for many di¤erent LSFEM structural formulations which showed poor conservation

at the FSI boundary. They did successfully examine a simultaneously coupled for-

mulation using a Weak-Galerkin formulation for the structural domain. The work

contained in this dissertation examined and corrected many of the issues surrounding

the LSFEM structural problems observed by Kayser-Herold and Matthies.

2.4 Fluid Analysis

Karniadakis and Sherwin examined several �uid problems using spectral-hp

element methods. They argued against many modern critics who have said that

�nite element methods of any type will result in poor results for �uid problems.

They pointed out that the hp-spectral method, which considers both the mesh size

and shape function order, is essential for improving accuracy when solving a given

�uid problems using �nite elements. They showed accurate results for several types

of �uid problems with great success using �nite element methods [27]. This success

was shown for both subsonic and supersonic �uid cases. However, there are still

many critics who are convinced that �nite elements can never perform as well as

�nite volume or �nite volume methods for �uid problems [28,29]. A comparison of

LSFEM to �nite di¤erencing was accomplished in this dissertation.
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2.5 Mesh Deformation

Many FSI methods may include complete remeshing of the �uid domain as the

structural domain deforms [30,31]. This technique leads to poor results because of

the inherent numerical di¤usion that occurs when interpolating data from the old

grid to the new grid. E¤ects such as weak secondary shocks or contact discontinuities

are lost [32].

To avoid a time consuming remeshing process, a moving boundary without

remeshing was considered by Pettit and Beran. A transpiration boundary condition

was applied at the interaction point in the model. This involved setting various

di¤erential equations to zero at the moving wall [33]. The transpiration boundary

conditions were limited to small displacements of the boundary surface.

Kolonay et al. also used transpiration boundary conditions to approximate

the response of an aeroelastic problem [34]. The goal was to minimize drag over

the wing through the optimization of numerous control surfaces that control the lift

pro�le of the wing. These numerous control surfaces would produce a signi�cant

computational cost if each control surface was fully modeled. Through the use of

transpiration boundary conditions, each control surface�s e¤ect on the lift and drag

pro�le was approximated accurately with low computational requirements.

Bartels [35] used an elasticity-based moving mesh scheme to approximate mesh

deformation due to structural boundary movement. Bartels applied this method

to three-dimensional aeroelastic problems successfully. This method was shown as

a robust method for coupled problems. The method performs well to maintain

cell/element shape and propagates boundary deformation properly throughout the

domain interior. In addition, this method �ts well within a �nite-element framework.

Martineau and Georgala also used a time-dependent elastic-spring analogy for

a mesh movement algorithm for various complex geometries [36]. The elastic-spring

analogy is a common algorithm [24, 37], but Martineau and Georgala improved the
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algorithm through a novel predictor-corrector scheme. This improved the robustness

of the method. The spring-analogy algorithm was also used in this least-squares

study.

Sackinger et al. leveraged the elastic-spring analogy to derive a pseudo-solid

mesh deformation scheme using �nite elements [37]. This allowed them to map any

�uid domain shape and handle complex geometry with structured or unstructured

meshes while considering a free and moving boundary.

Etienne et al. also implemented the pseudo-solid approach using a fully mono-

lithic approach where the problem physics were modeled using unsteady condi-

tions [38]. They used unsteady Navier-Stokes equations with a hyper-elastic solid.

The nonlinear behavior was handled using Newton-Raphson methods to reach quick

convergence. They showed good convergence properties with a scheme using the

pseudo-solid approach in a purely monolithic scheme.

2.6 Nonconformal Meshes

Mortar element schemes have received interest as of late due to their proposed

ability to match two or more meshes in a nonconforming manner where element

location and element polynomial order do not need to be the same at the interface

boundary. Anagnostou et al. developed the basic concept of mortar elements [39].

It was done in a very generalized way to help for a large class of problems. Seshaiyer

and Suri [40] and Belgacem et al [41] examined the use of mortar elements for both

�uid and structural problems. They conducted studies in which they examined the

hp-spectral convergence of the mortar elements using Weak Galerkin �nite element

methods. Not only did they see good accuracy, but convergence rates were properly

matched to theory.

Swim and Seshaiyer examined nonconformal meshes using a three-�eld formu-

lation for a FSI problem [42]. They showed that the theoretical formulation is stable

and consistent.
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Least-squares can easily be used similar to the mortar element framework.

It can be used to match two meshes within a domain or it can match interface

conditions between two di¤erent domains, such as those in a FSI problem. LSFEM

nonconformal meshes were examined here within the LSFEM scheme using methods

similar to mortar methods.

2.7 Arbitrary Lagrangian-Eulerian (ALE) Schemes

Lagrangian meshes are typically used in structural mechanics problems [43].

Eulerian meshes are typically used in �uid problems [11]. The mixture of these two

types of meshes/coordinate systems has proven problematic [44]. The ALE tech-

nique does not exhibit these problems. The technique does not follow the material

deformation nor does it remain spatially �xed at each node. The mesh changes in

an arbitrary manner independent of material deformation. The mesh may move

with the �uid, remain �xed, or move in any other prescribed way [45, 46]. The

ALE technique modi�es the �uid elements such that the convective velocities used

within the �uid equations represent the relative velocity between the actual and grid

velocities [45,46]. This allows for the �uid mesh to move with a prescribed bound-

ary deformation generated from the structural domain and still remain accurate

throughout the entire �uid domain�s mesh deformation.

Unfortunately, ALE methods are computationally expensive. To address this,

Tan and Belytschko used a blended mesh method where the ALE mesh overlaps the

�uid Eulerian mesh. Data from the ALE mesh is then coupled with the Eulerian

mesh through blended functions [44]. This exhibited bene�ts observed using ALE

methods, while reducing computational costs. ALE methods were investigated in

this study.
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2.8 Mixed Finite Elements

The use of a mixed formulation within the �nite element framework has at-

tracted interest for quite some time now. Especially in the case where coupling

between di¤erent types of physics, the mixed formulation becomes valuable. Rela-

tionships such as pressures, displacements, and velocities can be shared within the

mixed framework. Brezzi and Bathe performed a detailed study of mixed �nite ele-

ment formulations on both �uids and structures [47]. They examined the stability

and optimal error bounds in mixed methods. They discovered little di¢ culty with

Navier-Stokes �uid analysis but they had extensive di¢ culty with the structural do-

main. They proposed many di¤erent types of mixed plate and shell elements but

none were able to satisfy the mathematical conditions of stability and optimal error

bounds. This has been a common issue with many mixed type elements. Mixed

formulations have truly exhibited mixed results.

Arnold et al. [48] have taken a very mathematical approach to mixed �nite

elements for two-dimensional elasticity. They have managed to come up with a

mathematically consistent formulation that exhibits proper convergence rates with a

large enough minimum polynomial order [48]. Arnold et al. were the �rst to provide

an accurate mixed formulation using standard Weak Galerkin methods.

2.9 High Altitude Long Endurance Aircraft

The joined-wing sensor-craft is a High-Altitude Long-Endurance (HALE) air-

craft [49] by virtue of its extremely high-aspect ratio wings. HALE aircraft typically

have aeroelastic e¤ects that are nonlinear and require unique considerations due to

their lightweight wing structure with long span length [50�53].

Drela [51] described a preliminary design methodology for HALE aircraft using

nonlinear structures and control e¤ects. Drela used a violent gust encounter as a

critical load case. The nonlinear behavior mixed with the gust load case showed

critical changes in the design of the sample HALE aircraft. The methodology is
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good for preliminary design only, since it is a low-�delity model. Linear lattice

panel models were used for the �uid domain [51]. Drela�s study did not involve a

highly detailed analysis. In addition, the gust loads were approximated as static.

A full transient analysis of a HALE aircraft is of special interest.

Similarly, Patil et al. [50] also implemented nonlinear aeroelastic e¤ects in the

analysis of a HALE aircraft. They noted that their results for a fully nonlinear

aeroelastic HALE aircraft would di¤er completely if they had not considered non-

linear �exibility e¤ects [50]. In addition, Patil and Taylor produced models with

wings of uniform and non-uniform characteristics and models that could be solved

nonlinearly in both frequency and time domains [54,55]. All models and results were

accurate for geometrically exact wings. Patil et al. produced a reliable methodology

to handle gust response for HALE aircraft [55].

Strganac et al. [53] also showed that nonlinear interdisciplinary interactions

occur for HALE aircraft. More importantly, this was shown for the joined-wing

sensor-craft concept. Their study was not fully-coupled and there was no gust

analysis performed [53].

2.10 Aircraft Gust Loads and Response

Gust loads are often critical load cases, because of the sudden and dynamic

addition of vertical velocity components that result in a change in the vehicle�s

e¤ective angle of attack [56]. Past research has been completed on the joined-

wing concept using only an instantaneous static gust load case [1,8]. These studies

showed that the gust load case was a critical load for the design of the joined-

wing. Unfortunately, a transient nonlinear analysis of the joined-wing has not been

performed due to its complexity. An accurate time-dependent FSI analysis code is

required to handle such a problem.
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Figure 2.1 Sample Discrete and Nonlinear Transient Gust Response for Various
Sample Frequencies

The work performed here is traceable to a complex joined-wing transient gust

analysis problem. A sample discrete and nonlinear response such as

y (t) =

8<: M [1� cos (!mt)] : 0 < t < 2�
!m

0 : 2�
!m

< t <1

9=; (2.7)

is adequate for an initial transient gust analysis. This provides the gust in�uence

on a vehicle for a nonlinear input. Several gust frequencies (!), which a¤ect the

gust length, can be used individually throughout the gust frequency range and a user

de�ned magnitude (M) could help specify gust speed. Figure 2.1 shows a number of

possibilities for discrete gust inputs. The methodology discussed in this dissertation

is capable of handling the transient discrete gust response pro�le shown while still

accurately solving for the nonlinearities of the �uid and structural domains.
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III. Finite Element Methods

3.1 Basic Theory and Methodology of the Least Squares Finite Element Method

Eason [14] considers least-squares through a traditional boundary value prob-

lem

Au = f in domain 
 (3.1)

Bu = g on boundary � (3.2)

where A and B are �rst-order di¤erential operators, u is the vector of �eld variables

of the system, and f and g on the right hand side of the equations are functions that

do not depend on u. A trial solution is used and is represented as

u(x) � uh (x; c) (3.3)

where c is the vector of unknown parameters and h denotes that it is a discretized

response. The residuals measure the error of the approximation, i.e.,

RA = Auh � f (3.4)

RB = Buh � g (3.5)

where RA and RB represent the interior residual and boundary residual, respectively.

The least-squares functional weighs the residuals through the L2 norm (j�j0).

It is de�ned as

I (u) =
1

2

Z



��Auh � f
��2
0
d
 +

1

2

Z
�

��Buh � g
��2
0
d� (3.6)
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where the L2 norm for a single one-dimensional response u (x) is

ju (x)j0 =

0@Z
�

ju (x)j2 dx

1A 1
2

(3.7)

The next norm, which tests continuity and smoothness of the response u (x), is the

H1 norm of u (x) which is de�ned as

ju (x)j1 =

0@Z
�

h
ju (x)j2 + ju0 (x)j2

i
dx

1A 1
2

(3.8)

In general, the Hk norm is de�ned as

ju (x)jk =

0@ kX
i=1

Z
�

"����@iu (x)@xi

����2
#
dx

1A 1
2

(3.9)

In addition, the L2 norm can be de�ned for u with multiple responses using

the inner product

juj0 = (u; u)
1
2 (3.10)

where the inner product is de�ned as

(u; v) =

Z



uTvd
 (3.11)

The dual norm, or rather the negative norm, is de�ned using the inner product

juj�k = sup
06=v�Hk

�
(u; v)

jvjk

�
(3.12)

The half norm H1=2 and negative half norm H�1=2 are theoretical in basis only.

Practical implementation or calculation of these norms is typically performed using
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hieristic means in conjuction with an easy to implement L2 norm [23]

juj21=2 u
p
h juj20 (3.13)

juj2�1=2 u
1p
h
juj20 (3.14)

The solution improves as the functional goes to zero, or equivalently as the

residuals go to zero. The user may prescribe di¤ering weights between the norms to

give priority or to change the error balancing of the problem. Then the least-squares

functional may take the form

I (u) =
X

W
i

Z

i

��Auh � f
��2
0
d
i +

X
W�i

Z
�i

��Buh � g
��2
0
d�i (3.15)

where the W�s signify the weight of each domain 
i or boundary �i. The neces-

sary condition for the minimum of the functional is to set the �rst variation of the

functional to zero [11]

�I (u) =

Z



RA
dRA

dc
d
 +

Z
�

RB
dRB

dc
d� = 0 (3.16)

Jiang discretizes and divides the domain into �nite elements for the above

functional and its variation using

uhe (x) =

NmX
j=1

 j

8>>>>>>>>>>>><>>>>>>>>>>>>:

u1

u2
...

uj
...

um

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(3.17)
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where uj represents the modal values at the jth mode, h denotes the mesh parameter

[9]. Nm de�nes the number of modes which includes edge mode coe¢ cients, bubble

mode coe¢ cients, and nodal values. Finally,  are the element shape functions.

The shape functions must be admissible within the domain

uh 2 V h =
�
uh 2 Hm (
) : uh (�) = 0

	
(3.18)

In other words, the trial functions uh must fall within the �nite element subspace

V h such that the trial functions uh are continuous piecewise polynomials within the

Hilbert space (Hm (
)). A discussion of the selected shape functions is detailed

later in this research. The vector of shape functions, N , is de�ned as

N =
�
 1;  2; : : : ;  Nm

�
(3.19)

Inserting the �nite element approximation into Equation (3.16) creates a set

of simultaneous linear algebraic equations

KU = F (3.20)

where K is called the �sti¤ness matrix,�U represents the degrees of freedom of the

system, and F is the �force vector.�K and F are calculated for each element using

K
e =

Z



�
A 1; A 2; : : : ; A Nn

�T �
A 1; A 2; : : : ; A Nn

�
d
 (3.21)

F
e =

Z



�
A 1; A 2; : : : ; A Nn

�T
f d
 (3.22)

The di¤erential operator A is applied to the discretized system, i.e.,

A j =

NdX
i=1

@ j
@xi

Ai +  jA0 (3.23)
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where Ai denotes the coe¢ cients applied to the spatial derivatives in all dimensions

(Nd) and A0 are the coe¢ cients applied to the responses without derivatives. Once

each Ke and Fe are determined for every element in the system, the global K and

F are assembled. The known U values are applied as de�ned from the boundary

conditions or included in the boundary residual. The unknown U values can now be

found [9]. Jiang�s LSFEM formulation was used on all problems in this study.

If the boundary integral portion of Equation (3.6) is considered, K and F are

composed in a slightly di¤erent form. K and F are composed of boundary and

domain parts.

(K
 +K�)U = (F
 + F�) (3.24)

The domain parts are assembled globally and may include their respective weights,

�X
W
iK
i +

X
W�iK�i

�
U =

�X
W
iF
i +

X
W�iF�i

�
(3.25)

The domain contributions (
) are generated from Equations (3.21) and (3.22). The

boundary contributions (�) are generated through

K�e =

Z
�

�
B 1; B 2; : : : ; B Nn

�T �
B 1; B 2; : : : ; B Nn

�
d� (3.26)

F�e =

Z
�

�
B 1; B 2; : : : ; B Nn

�T
fd� (3.27)

As an example case to demonstrate the development of the di¤erential opera-

tors, a simple di¤erential equation is considered. Poisson�s equation is

�r2u = fp (3.28)

where u is the primal response and fp is the right hand side of Poisson�s equation

speci�ed over the two-dimensional domain. The Laplacian operator r2 in expanded
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form and applied to the Poisson�s equation is

r2u =
@2u

@x2
+
@2u

@y2
(3.29)

The �rst step is to convert the original di¤erential equation to mixed �rst order

form. Two secondary variables (v1; v2) are formed to represent the derivatives of

the primal variable u, i.e.,

�@v1
@x

� @v2
@y

= fp (3.30)

v1 �
@u

@x
= 0 (3.31)

v2 �
@u

@y
= 0 (3.32)

In this form, the three equations and three unknowns are identi�ed and thus, the

system of equations is exactly determined. The di¤erential operator A becomes

A =

26664
0 �1 0

�1 0 0

0 0 0

37775 @

@x
+

26664
0 0 �1

0 0 0

�1 0 0

37775 @

@y
+

26664
0 0 0

0 1 0

0 0 1

37775 (3.33)

The di¤erential operator A can be simpli�ed to the form

A = A1
@

@x
+ A2

@

@y
+ A0 (3.34)

The rows of the matrix correlate to the di¤erent di¤erential equations and each

column correlates to each degree of freedom. The degrees of freedom are also repre-

sented in matrix form,

U =

8>>><>>>:
u

v1

v2

9>>>=>>>; (3.35)
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The right side of the equation is represented through

f =

8>>><>>>:
fp

0

0

9>>>=>>>; (3.36)

The above equations can then simply be applied to the basic K and F LSFEM

operators de�ned by (3.21) and (3.22).

Ellipticity of the selected formulation is mathematically desirable because the

internal and external characteristic derivatives can be uniquely determined for the

system of di¤erential equations. An elliptic formulation consists of purely negative

characteristic roots whereas a non-elliptic formulation could have positive or repeated

positive roots. Jiang [9] provided a way to determine if a system of di¤erential

equations is elliptic or non-elliptic. For some nonzero triplets (�t; �) applied to only

the derivative portions of the di¤erential operator, if

det (A1�t + A2�t) 6= 0 (3.37)

then the system of di¤erential equations is elliptic [9]. For systems with an odd

number of di¤erential equations, ellipticity is impossible since all the characteristic

roots within an elliptic system must be complex and must come in pairs. In many

cases, it is appropriate to add equations, such as di¤erential symmetry, to ensure

an even number of equations. For systems with an odd number of responses, but

an even number of equations, the above test can be applied by providing a dummy

variable to ensure that the A operator is square [9].

It is important to consider that the mixed form results in a non-elliptic form.

It has been proven that elliptic di¤erential equations will show optimal convergence
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rates for a problem formulated in LSFEM. The upper bound

Elliptic:
��u� uh

��
0
� C1h

p+1 jujp+2 (3.38)

holds for the error convergence rates for elliptic problems [9, 57]. In other words,

if the problem is elliptic and smooth with respect to the p + 2 order of the exact

solution, the slopes of the error norm (m) should be greater or equal to p+ 1 when

plotted with respect to element size (h). In cases where discontinuities, the jujp+2
norm will become very large and will dominate the overall error bound since that

norm is a test for solution smoothness since that norm consists of error with respect

to u�s derivatives up to its p+2 order. For a problem such as a �uid shock problem,

the error rate of p+1 will not be the only determination for the bound of the solution

error.

For non-elliptic problems, only a slope of p is guaranteed, i.e.,

Non-Elliptic:
��u� uh

��
0
� C2h

p jujp+1 (3.39)

However, just because a proof does not exist a priori for non-elliptic problems does

not imply that non-elliptic problems do not achieve the same convergence rates as

elliptic formulations. Note that the optimal convergence rates are a guaranteed

minimum and is only applicable for fully continuous solutions or for discontinuous

solutions with a perfectly graded mesh [27]. The p + 1 convergence rate has been

proven only for error norm of the �nite element approximation (uh) relative to exact

solution (u). The least-squares residual error (R) convergence rate is guaranteed to

be p for either elliptic or non-elliptic formulations.

LSFEM Residual:
��R �uh���

0
� C3h

p jujp+1 (3.40)
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To make the mixed formulation of Poisson�s equation elliptic, only one equation

must be added to the system. A symmetry constraint equation is added to the

system, e.g.,
@v1
@y

� @v2
@x

= 0 (3.41)

The new di¤erential operator A now takes the form

A =

26666664
0 �1 0

�1 0 0

0 0 0

0 0 �1

37777775
@

@x
+

26666664
0 0 �1

0 0 0

�1 0 0

0 1 0

37777775
@

@y
+

26666664
0 0 0

0 1 0

0 0 1

0 0 0

37777775 (3.42)

The U vector does not change since the response types are the same. However, the

vector F must change with the number of equations, e.g.,

f =

8>>>>>><>>>>>>:

fp

0

0

0

9>>>>>>=>>>>>>;
(3.43)

This results in a new formulation that is elliptic. As a side note, the elliptic and

non-elliptic forms were applied to the sample solution below. The results and their

comparative error to the problem�s exact solution did not change.

A sample problem was considered using Poisson�s equation. The problem

considered here had a known exact result

uexact (x; y) =
�
7x+ x7

�
cos (�y) (3.44)
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The problem was solved by providing one boundary condition at each wall of the

square domain [�1; 1]� [�1; 1]. The following boundary conditions were applied

v1 = 14 cos (�y) applied at x = �1 (3.45)

v2 = 0 applied at y = �1 & y = 1 (3.46)

u = 8 cos (�y) applied at x = 1 (3.47)

with a user-prescribed right hand function of

fp = � cos (�y)
�
42x5 � 7�2x� �2x7

�
(3.48)

With the exact solution known for all primal and secondary variables, an error

norm relating the �nite element response to the exact solution was calculated. The

error norms can be plotted on an hp-re�nement plot where as the p-value is increases,

the mesh size is increased to maintain the overall system degrees of freedom. If

done properly, the error should reduce as the p-value increases even though the total

number of system degrees of freedom remain the same. This shows that the p-

method can provide "free" improvement in accuracy without the need to increase

the problem size.

The error norm can provide a way to verify the implemented LSFEM code by

relating hp-convergence rates for all responses and the least-squares functional/residual.

For the error norm, a slope of 1 was predicted and was correctly observed on an hp-

spectral re�nement plot (Figure 3.1). The hp-spectral re�nement plot re�nes the

p-value while coarsening the mesh. This maintains the total number of modes used

throughout the re�nement while increasing the polynomial order. Both least-squares

residual errors were shown and the L2 error norms with respect to the FEM and ex-

act solution were shown. This �gure shows the proper slope (m = 1) and veri�es
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Figure 3.1 hp-Spectral Re�nement for Poisson�s ProblemAnalyzing Integrated Re-
sponse Error Norm Across the Domain

the LSFEM code. This plot directly compares to results published by Pontaza and

Reddy [17].

3.2 The p-Method and LSFEM

Pontaza and Reddy have stressed the importance of a higher p-value when

using LSFEM [18]. The least-squares method has enjoyed renewed interest in re-

cent years, mainly because of the realization that p-re�nement is an essential part

of using LSFEM. Low order least-squares �nite elements often display poor results

when using full-order numerical integration. Reduced-order integration may allevi-

ate this problem for these lower-order elements, but the predictive capabilities of

these elements is reduced, especially when considering distorted elements [18]. The

use of higher-order elements resolves those problems. Pontaza and Reddy observed

that as long as the element p-value is high enough, full-order integration can be

used with accuracy for LSFEM mixed formulations [15]. This section discusses the

implementation challenges of higher-order elements.
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For a mixed LSFEM formulation applied to a system of �rst order di¤eren-

tial equations, the p-method is applied using the same p-value across all levels of

responses. It does not matter whether a response is a primal or secondary response

because the same polynomial order of each response is the same. This is a conve-

nient factor of the mixed �rst-order LSFEM form. There is no need for mixed order

integration. Additionally, the mixed �rst-order LSFEM does not require continuous

derivatives at the element boundaries. This means that nodal and modal expan-

sions only require C0 continuity at element boundaries. However, in cases where a

secondary variable is directly identi�ed to be a derivative of a primal variable and

is solved as a direct �nite element response, then an improved level of accuracy is

observed for that primal variable. This improved level of accuracy is due to the fact

that global continuity is weakly enforced when using a mixed formulation [17]. This

is because of the secondary variables being continuous at element boundaries and

this creates primal variables that are smooth or nearly smooth at its boundaries. It

was strongly recommended by Pontaza and Reddy to select a system p-value with

an order equal to or higher than the highest order derivative observed in the original

di¤erential equation form. In the case of a linear Euler-Bernoulli beam, the orig-

inal di¤erential equation is a 4th order equation. In the mixed LSFEM form, the

equation results in four �rst order di¤erential equations. In this case, a p-value of 4

or greater is suggested. However, the problem can still be solved successfully using

p-values lower than 4, but global continuity might not hold in a weak sense.

It has been observed that matrix "banding" does not occur within the global

sti¤ness matrix when using the p-method. Using direct matrix solution procedures

creates poor "banding" and can result in solutions that take longer to solve or ap-

ply reduction techniques. In the case of LSFEM, conjugate gradient methods are

commonly used and avoid the need for global assembly, thus reducing the required

system memory. In this case, poor banding is not an issue.
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3.2.1 Shape Functions. In a modal expansion, the shape functions used in

(3.17) are based on the C0 p-type hierarchical basis

 i (�) =

8>>><>>>:
1��
2
; i = 1;�

1��
2

� �
1+�
2

�
P�;�
p�2; 2 � i � p; p � 2;

1+�
2
; i = p+ 1

9>>>=>>>; (3.49)

where P�;�
p are the Jacobi polynomials of order p and � are the generalized coor-

dinates ranging from [�1; 1] [27]. The �rst and last mode are considered nodal

responses which equal the response at the element node locations. The other modes

are coe¢ cients of shape functions of second order and higher. In this research,

ultraspheric symmetric polynomials were used with � = � = 0 which are also known

as the Legendre polynomials [17,27]. The Legendre polynomials are formed through

P 0;0n+1 (�) =
(2n+ 1)

(n+ 1)

�
�P 0;0n (�)� nP 0;0n�1 (�)

�
n = 1; 2; ::: (3.50)

where the �rst two polynomials, which start the series, are de�ned as [27]

P 0;00 (�) = 1 P 0;01 (�) = x (3.51)

The above modal expansion was speci�ed for a one-dimensional element. For

the two-dimensional case, the coordinates of an element are mapped to a bi-unit

square (
e (�; �) = [�1; 1]� [�1; 1]) using generalized coordinates (�; �). For the

two-dimensional case, a full-tensor product of the one-dimensional expansion basis

is used, i.e.,

 jk (�; �) =  j (�) k (�) (3.52)

This full-tensor product expansion becomes apparent by examining Pascal�s Triangle

[27]. The expansion basis for an example p-value of 3 is shown in Figure 3.2. The

full-tensor product expansion uses coupled modes of a higher polynomial order than
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Figure 3.2 Mode Selection for Full-Tensor Product Expansion Shape Functions
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Figure 3.3 Mode Selection for Serendipity Shape Functions

is necessary to reach the speci�ed p-value. However, a high number of coupled modes

are used and can increase accuracy for problems where a high coupling between x

and y coordinates are observed. For this expansion, all terms with exponents less

than or equal to 3 are used.

A second set of shape functions which are worthwhile to consider are the

serendipity elements where the minimum number of modes are considered for a given

polynomial order. An example p-value of 3 is shown in Figure 3.3. As the �gure

shows, the serendipity mode selection includes very few coupled modes with an or-

der beyond a given p-value. The serendipity expansion is a subset of the full-tensor

product expansion.

The serendipity expansion basis will reach a higher polynomial order with fewer

degrees of freedom than the full-tensor expansion [27]. However, accuracy might

become a factor since many coupled modes are eliminated. A study comparing
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the two shape function expansions was completed within this research. Both of

the expansion bases shown are admissible for all response types within the mixed

�rst-order LSFEM form.

3.2.2 Bubble Mode Condensation. The most noteworthy advantages of us-

ing the p-method is the improvement in accuracy and the ability to condense element

bubble modes (those modes that do not correlate to element edge responses). The

p-method may include some additional pre- and post-processing, but the reduction

in the overall size of the global system matrix can reduce computation time when

solving the system of linear algebraic equations (3.20). Only the bubble modes

may be condensed for each element. The nodal responses must be assembled at the

vertices of other elements and the edge modes must be shared at the element faces.

The node and edge mode responses are considered to be the modes that are to be

recovered (ur) and the bubble mode responses are to be condensed (uc). The system

of algebraic equations are parsed with respect to recovered and condensed modes24 Krr Krc

Kcr Kcc

358<: Ur

Uc

9=; =

8<: Fr

Fc

9=; (3.53)

The new system of equations results in the equation

�
Krr �KrcK

�1
cc Kcr

�
Ur =

�
Fr �K�1

rc Fc
�

(3.54)

after some algebraic conditioning. It takes the standard form where a new Kresult

and Fresult are used, i.e.,

KresultUr = Fresult (3.55)

The condensed responses are then recovered in a post-processing manner through

Uc = K�1
cc (Fc �KcrUr) (3.56)
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This means that theKcc, Fc, andKcr matrices must be saved for each element so they

can be used to recover the condensed bubble modes after the solution is complete.

These matrices should be saved on a hard drive disk instead of held within system

memory to help decrease memory requirements.

To consider the impact of bubble mode condensation, the number of each type

of mode must be considered. For a given p-value, a sample two-dimensional element

will have four node responses and (p� 1) number of edge modes on each of the four

edges, which results in 4 (p� 1) responses and (p� 1)2 bubble modes. This means,

for a two-dimensional full-tensor product expansion basis, there will be 4p recovered

modes and (p� 1)2 condensed modes. As an example, for a given p-value of 12, the

number of responses solved with the global system matrix is reduced by 71.6%. If

solution capability is limited by memory size, bubble mode condensation is a means

to reduce the problem�s memory requirements by a signi�cant factor.

3.2.3 Isoparametric Curved Edge Elements. With the use of higher order

p-elements comes the possibility of using a higher order mapping of element coordi-

nates. In other words, quadrilateral elements can evolve from the simple straight

edged elements to elements with curved edges speci�ed with an order as high as the

element�s p-value (Figure 3.4). This is especially useful when using large elements

with a high p-value around geometries with curved edges.

Isoparametric elements involve using the same shape functions to describe both

the response and the coordinate mapping from the master element to the physical

element. An element�s Jacobian is used to approximate the generalized coordinate

mapping of the derivatives and integrals used to develop the sti¤ness matrix and

force vector [43]. The �rst step is to develop the generalized coordinate mapping

using the element�s shape functions. The x and y coordinates are mapped as

x =
X

 i (�; �)xi (3.57)
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Figure 3.4 Elements Are Modeled as Either Straight Edge Elements With Nodal
Mapping or Curved Edge Elements with Higher Order Element Coor-
dinate Mapping

y =
X
i

 (�; �) yi (3.58)

where xi and yi are the modal coe¢ cients which are prescribed through the mesh

properties [43]. For a straight edged quadrilateral element, only the nodal values are

needed to prescribe an element�s coordinates and the higher order shape functions

are ignored. For a curved edged element, the element edge that is curved utilizes

the edge modes to help describe the curved edge coordinates.

The Jacobian matrix is formed by using the derivatives of the shape functions

multiplied the coordinate nodes and modes.

J =

24 @x
@�

@y
@�

@x
@�

@y
@�

35 =
24 J11 J12

J21 J22

35 =
24 @

@�

h
 1  2 � � �  (p+1)2

i
@
@�

h
 1  2 � � �  (p+1)2

i
35

26666666666666664

x1 y1

x2 y2

x3 y3

x4 y4

Cx1 Cy1

Cx2 Cy2
...

...

37777777777777775
(3.59)
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The Jacobian matrix provides the derivatives of the actual coordinates with respect

to the generalized coordinates. The inverse Jacobian provides the useful derivatives.

It approximates the generalized coordinates with respect to the actual coordinate

system, i.e.,

J�1 =

24 @�
@x

@�
@x

@�
@y

@�
@y

35 =
24 (J11)�1 (J12)

�1

(J21)
�1 (J22)

�1

35 (3.60)

These derivatives are useful when applying spatial derivatives to the system of dif-

ferential equations [43]. The chain rule applied to the standard spatial derivatives

in terms of generalized coordinates are

@

@x
=

@

@�

@�

@x
+

@

@�

@�

@x
=

@

@�
J�111 +

@

@�
J�112 (3.61)

@

@y
=

@

@�

@�

@y
+

@

@�

@�

@y
=

@

@�
J�121 +

@

@�
J�122 (3.62)

The di¤erential operator, A, now takes the form

A = A1

�
@

@�
J�111 +

@

@�
J�112

�
+ A2

�
@

@�
J�121 +

@

@�
J�122

�
+ A0 (3.63)

The Jacobian can also change the nature of an integral which is in terms of

generalized coordinates, i.e.,

Z



[�] d
 =
Z 1

�1

Z 1

�1
[�] jd�d� (3.64)

where the resultant Jacobian j is de�ned as [43]

j = det (J) (3.65)

3.2.4 Numerical Integration. Even though the Jacobian uses the same

order shape functions that are used for the �nite element response, the numerical

integration order normally is not adjusted for its presence [43]. Only the order of the
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response shape functions are considered for the integration scheme. For a system of

linear di¤erential equations applied to the LSFEM functional, the maximum possible

polynomial order is 2p. Considering a one-dimensional integral, the minimum Gauss

integration order g (number of gauss points) is dictated by

2g � 1 � maximum polynomial order = (2p) (3.66)

or rather

g � p+
1

2
(3.67)

In other words, the minimum Gauss order g must be g � p + 1. For a nonlinear

system of di¤erential equations, the assumed worst case operand is u � u. If the

shape function has an order of p, it can take the form  (�p). If the operator A

matches the worst case scenario, then the operator will also have an order of p and

can take the form A (�p). The LSFEM integral now takes the form

K =

Z



[A ]T [A ] d
 =

Z



[A (�p) (�p)]T [A (�p) (�p)] d
 (3.68)

which results in the highest possible polynomial order of the integrand to be 4p.

The minimum Gauss order is now required to be

g � 2p+ 1
2

(3.69)

or rather the minimum Gauss order g must be g � 2p+ 1.

The number of Gauss points Ng is dictated by the Gauss quadrature order g.

For a Gauss-Legendre numerical integration scheme, the Gauss points are generated

by solving for the zeros of the polynomial P�;�
Ng

of order Ng interior to the interval

�1 < � < 1.
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3.2.5 Boundary Condition Considerations When Using the p-Method.

When using higher order elements, boundary conditions become more complex.

More than just the nodal values must be speci�ed at the domain boundaries; the

edge mode coe¢ cients must also be speci�ed. Two methods were used in this study.

One method used the collocation method and the other uses LSFEM.

The collocation method uses samples on the boundary to determine the edge

mode coe¢ cients. The boundary condition values at the boundary are provided by

the user and used to solve the unknown coe¢ cients using a set of linear algebraic

equations. Consider an example boundary condition where

u (x; 0) = g(x) (3.70)

For an example p-value of 4, the set of equations may take the form8>>>>>>>>><>>>>>>>>>:

g1

g2

g3

g4

g5

9>>>>>>>>>=>>>>>>>>>;
=

26666666664

 1 (�1)  2 (�1)  3 (�1)  4 (�1)  5 (�1)

 1 (�2)  2 (�2)  3 (�2)  4 (�2)  5 (�2)

 1 (�3)  2 (�31)  3 (�3)  4 (�3)  5 (�3)

 1 (�4)  2 (�4)  3 (�4)  4 (�4)  5 (�4)

 1 (�5)  2 (�5)  3 (�5)  4 (�5)  5 (�5)

37777777775

8>>>>>>>>><>>>>>>>>>:

u1

C1

C2

C3

u2

9>>>>>>>>>=>>>>>>>>>;
(3.71)

where the boundary condition values gi are evaluated at �ve points along the element

edge (�1; �2; �3; �4; �5). It is suggested here that the sample points along the edge be

located at predetermined Gauss points of the same order as the number of samples

along the boundary. The unknown nodal values (u1; u2) and coe¢ cients (C1; C2; C3)

can be solved using the above set of equations.

When using LSFEM, the least-squares functional takes the form

I (u) =

Z
�

ju� gj20 d� (3.72)
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The typical least-squares methods are then applied to create the standard K� and

F� matrices using (3.26) and (3.27). In this case, the boundary edge mode coef-

�cients and nodal values can be solved either beforehand or simultaneously within

the full problem domain 
. It has been observed in this study that solving the

boundary unknowns beforehand ensures an adequate accuracy with respect to the

boundary since a residual weighting factor with respect to the boundary condition

is not required. The error will be consistent with LSFEM. However, if the bound-

ary unknowns are solved simultaneously within the full problem domain, the error

between the boundary and the inner domain are balanced. A simultaneous solution

is preferred for a well-balanced least-squares functional, since the total error of the

entire problem is reduced overall and will provide a better overall result. However,

if the functional is not well-balanced or if it is unknown whether the function is

properly balanced through the residual weights, then it is suggested to solve for the

boundary result beforehand to ensure guaranteed accuracy at the boundary.

Both methods discussed above have shown solid accuracy. However, the collo-

cation method can sometimes show oscillations. This problem is usually alleviated

when the sample points at the boundary are located at the Gauss points [27]. An-

other issue with the collocation method is that it would not be a consistent solution

scheme if LSFEM is the preferred method and is used for all �elds within the prob-

lem. For a well-balanced least-squares residual, solving all �elds and boundary

integrals and boundary conditions simultaneously would provide the best balanced

error across the problem. This was observed for several well-balanced problems

within this dissertation.

3.2.6 Angled Boundary Condition Considerations for Higher Order Elements.

Special considerations must be taken when solving problems with angled boundary

conditions. For example, a slip wall boundary condition used for an inviscid �ow

problem is generated by enforcing a no penetration rule where the normal velocity

relative to the wall must be zero. The normal and tangential velocities are deter-
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mined using � which is the angle of the vector normal to the surface. The equations

relating the Cartesian �uid velocities vfx ,v
f
y to the normal and tangential velocities

vfn,v
f
t are 8<: vfn

vft

9=; =

24 cos (�) sin (�)

sin (�) � cos (�)

358<: vfx

vfy

9=; = [C]

8<: vfx

vfy

9=; (3.73)

The matrix C is unitary, i.e.,

C = CT = C�1 (3.74)

Similarly, stresses can be rotated using

f�0g = [C�] f�g

where C� is the stress transformation matrix. It is de�ned as

C� =

26664
cos2 (�) sin2 (�) 2 cos (�) sin (�)

sin2 (�) cos2 (�) �2 cos (�) sin (�)

cos (�) sin (�) � cos (�) sin (�)
�
sin2 (�)� cos2 (�)

�
37775 (3.75)

One useful property of C� is C�=C�1� . This is a useful property since the pre- and

post- processing of these angled responses uses the same matrix.

There are two options to implement the above coordinate rotation. One

option is to directly rotate each degree of freedom and the other option is to apply

a boundary integral condition which is solved simultaneously with the �eld domain.

To rotate each degree of freedom, consider the ith component to be rotated. For a

given equation KU = F , the ith component of U is modi�ed by using C in the
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following form for n number of global degrees of freedom [9]:

26666666666664

K11 K12 � � � K1iC � � � K1n

K21 K22 � � � K2iC � � � K2n

...
...

. . .
...

...

Ki1 Ki2 � � � KiiC � � � Kin

...
...

...
. . .

...

Kn1 Kn2 � � � KniC � � � Knn

37777777777775

8>>>>>>>>>>>><>>>>>>>>>>>>:

U1

U2
...

U�i
...

Un

9>>>>>>>>>>>>=>>>>>>>>>>>>;
=

8>>>>>>>>>>>><>>>>>>>>>>>>:

F1

F2
...

Fi
...

Fn

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(3.76)

This produces a non-symmetric K matrix. This is easily modi�ed by multiplying

the entire ith row by C.26666666666664

K11 K12 � � � K1iC � � � K1n

K21 K22 � � � K2iC � � � K2n

...
...

. . .
...

...

CKi1 CKi2 � � � CKiiC � � � CKin

...
...

...
. . .

...

Kn1 Kn2 � � � KniC � � � Knn

37777777777775

8>>>>>>>>>>>><>>>>>>>>>>>>:

U1

U2
...

U�i
...

Un

9>>>>>>>>>>>>=>>>>>>>>>>>>;
=

8>>>>>>>>>>>><>>>>>>>>>>>>:

F1

F2
...

CFi
...

Fn

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(3.77)

This modi�cation to the K and F matrices produces a method with symmetric

matrices. If the boundary is moving and the normal angles change, the K and

F matrix must be updated between every iteration. This can imply nonlinear

behavior of K and F . The biggest problem with this method is the angle � is

applied in a discrete manner instead of a continuous manner for higher order p-

elements. This method works perfectly for elements with linear polynomials only,

but when considering an element with a p-value of 2 or higher, the angle � will

be exact at the nodes, but the edge modes cannot display a varying change in �.

This implies that the option to apply a boundary integral condition to represent �

is essential for higher order elements. In this case, (3.73) is used within the LSFEM

functional where � can vary through the shape functions used within the problem
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framework. Both methods were examined in this research and a signi�cant increase

in accuracy was observed by using the LSFEM functional to enforce angled boundary

conditions.

Finding the angle � can prove to be di¢ cult if coordinate information is sup-

plied using higher order element coe¢ cients. To do this the angle can be determined

from the slope of the coordinates which identi�es the tangent line at the edge of a

curved element edge, i.e.,

� = tan�1
�
dy

dx

�
+
�

2
(3.78)

The challenge now is to determine the slope of the coordinates using higher order

element edge coordinates. The chain rule can be applied to obtain the derivatives

in terms of generalized coordinates, i.e.,

@y

@x
=
@y

@�

@�

@x
(3.79)

The � direction can be ignored for this derivative since the coordinate derivative is

only tangent to the element edge. The derivative @y
@�
can be determined directly

through a derivative of the shape functions multiplied by the y mode coe¢ cients.

The production of the @�
@x
derivative is not as straight forward. @x

@�
can be determined

directly and then @�
@x
can be approximated by simply taking the inverse of @x

@�
. This

is similar to the approximation method used by the Jacobian, i.e.,

@y

@x
=
@y

@�

�
@x

@�

��1
(3.80)

3.3 Nonlinear Solution Methods

Many nonlinear di¤erential equations were considered in this research. Several

methods exist to solve LSFEM nonlinear problems. The �rst method is the direct

iteration method. It is the most simple and has a large radius of convergence but a

slow rate of nonlinear convergence [9]. In other words, the direct iteration method
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may take longer to converge, but the initial guess does not need to be near the

correct nonlinear solution point. If K and F are nonlinear, the solution follows a

simple iterative scheme

K (Ur�1)Ur = F (Ur�1) (3.81)

where r is the current nonlinear iteration number [9, 11]. The direct iteration

scheme is the primary scheme used in this research. A good amount of success was

observed using this scheme for many nonlinear problems. However, there were a few

instances where the problem would not quite iterate to the full termination criterion

based upon a user-prescribed tolerance level

jUr � Ur�1j20 � TOL (3.82)

To �x this problem for certain cases, a scheme was needed that could avoid oscillating

around the iterative convergence tolerance level.

The second nonlinear method is the under-relaxation scheme. It follows the

direct iteration method using the nonlinear system

K
�
U
�
Ur = F

�
U
�

(3.83)

where U is de�ned by the last two nonlinear iterations, i.e.,

U = �rUr�2 + (1� �r)Ur�1 (3.84)

Here �r de�nes the balancing between the two time steps and must satisfy 0 � �r � 1

[11]. This scheme proved to be successful for problems that did not converge when

using the direct iterative method. A �r of 0.5 to 0.8 was successfully utilized for

these nonlinear cases.

One mathematical issue with the nonlinear iteration schemes shown above is

that the K and F matrices formed through the least-squares �nite element method-
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ology are linearized before the �rst variation of the least-squares functional is taken.

This is an assumption that helps maintain the sti¤ness matrix�s symmetric positive

de�niteness. In addition, the above iterative schemes have a slower convergence

rates than those found with the Newton-Raphson method. The Newton-Raphson

method and the Modi�ed Newton-Raphson method have historically reduced the

required number of nonlinear iterations. In addition, these schemes will not lin-

earize the system of di¤erential equations before the �rst variation of the function is

complete. However, the sti¤ness matrix of these methods is not symmetric due to

the linearization occurring after the variation is complete. This is a major downfall,

but the tangential sti¤ness matrix, created and solved within the Newton-Raphson

method, maintains its symmetry [11]. Overall, this method exhibits fast convergence

and consistent variational approaches for nonlinear problems, but is more complex

in its implementation than direct iteration. This method was not implemented in

this research, but that does not imply that its bene�ts should not be used in fu-

ture studies. For the problems solved here, the direct method and under-relaxation

iterative methods exhibited an acceptable rate of convergence.

3.4 Transient Discretization of LSFEM

Transient LSFEM problems were considered extensively in this research. Two

options were considered. The �rst option is the space-time coupled approach where

the temporal domain is treated as just another coordinate within the �nite element

shape functions, i.e.,

 =  (�; �; �) (3.85)

This method implies that the least-squares discretization and its related variational

principle is applied throughout the problem consistently. However, this method will

add an entire additional dimension to the problem. This will increase the problem

size signi�cantly. The temporal domain can be cut into smaller "strips" where the

time domain contains only a single time step. In this case, the initial condition for
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each time step "strip" is needed to calculate the time history. Each strip is solved

for in succession and will reduce system memory requirements [17].

The second option is to decouple the space-time coordinates where the tem-

poral coordinates are discretized using a �nite volume scheme and the spatial co-

ordinates are then discretized using LSFEM. The �-method is commonly used to

discretize �rst-order time derivatives. As an example, a system of di¤erential equa-

tions may include equations that contain a time derivative, e.g.,

At
@u

@t
+ A1

@u

@x
+ A2

@u

@y
+ A0u = At

@u

@t
+ Asu = f (3.86)

and equations that do not contain a time derivative, e.g.,

A1
@u

@x
+ A2

@u

@y
+ A0u = Asu = f (3.87)

Equation (3.86) is discretized with the �-method for those equations with a time

derivative via

At
un+1 � un

�t
+ �Asun+1 + (1� �)Asun = f (3.88)

and for those equations without a time derivative via

�cAsun+1 + (1� �c)Asun = f (3.89)

where n+ 1 denotes the current time step. The parameter � denotes the portion of

the time discretization that uses the implicit and explicit response. The parameter

�c relates the steady-state portion that follows the implicit and explicit scheme. The

parameter �c is usually selected to be equal to �. The scheme is purely implicit if

� = 1 and is purely explicit if � = 0. Both methods have a discretization error

on the order of �t. There is a special case when � = 0:5 where the order of the

error improves to O (�t)2. This special case is identi�ed as the Crank-Nicolson

method and is the preferred method due to its reduction in error. In addition,
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the �-method is considered to be stable for � � 0:5. Not doing so may result in

extra temporal oscillations of the solution [24]. A study comparing the space-time

coupled and space-time decoupled methods were analyzed in this research using a

simple one-dimensional wave problem.

Multiplying (3.88) by �t, expanding and re-arranging terms, the above tem-

poral discretization was rewritten in the form

(At +�t�A)un+1 = �tf � [At +�t (1� �)A]un (3.90)

This is similar to the standard form (3.1), but now takes the form

Atotalu
n+1 = ftotal (3.91)

where Atotal and ftotal have become

Atotal = At +�t�A (3.92)

ftotal = �tf � [At +�t (1� �)A]un (3.93)

This allowed the LSFEM code to treat the time discretization as a "black box" and

solve the problem in its standard format.

3.5 Residual Weighting

Changing the residual weights in a least-squares functional can help the user

create an equivalent norm (such as an H1=2 norm), can modify matrix weighting

for prioritization, and can modify local error. The user may prescribe di¤ering

weights among the norms to give priority or to change the error balancing of the

problem. The least-squares functional that utilizes residual weights, Equation (3.15),

is essential when considering �uid-structure interaction problems, since each domain

may exhibit residual errors that di¤er by several orders of magnitude.
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In many single-domain cases, residual weighting is not always essential to reach

the solution. When considering a multi-domain problem, residual weighting is ab-

solutely essential. It has been observed here and by others [23] that when a multi-

domain problem is considered, the balancing of residual weights must be performed

just to attempt to approach a reasonable solution. In fact, residual weighting in

an FSI problem has been observed to be the biggest challenge when considering a

simultaneous solution. If the wrong residual weights are used in an simultaneous

FSI problem, one domain can dominate the solution and will make the various �elds

completely unbalanced and the solution nonsensical.

The �uid-structure boundary interface conditions are not always governed by

standard L2 norms. Since the present LSFEM formulation is based on L2 norms, a

conversion factor is applied to modify the boundary interface norms to become com-

mensurate to the standard L2 norm. The stress matching condition is governed by

the H�1=2 norm and the velocity matching condition is governed by the H1=2 norm

at the interface boundary. In application, evaluating these norms become impracti-

cal. For a linear �nite interpolation, the boundary norms can become approximately

equivalent to the standard L2 norm, which has a practical implementation, by simply

multiplying the functionals by some heuristic relationship using mesh size (h). The

no penetration boundary interface relationship, which relates the the �uid velocity

vector (vf), the structural velocity vector (vs), and the normal vectors for both the

�uid (nf) and structure (ns), becomes [23,24]

Wi

��vs � ns + vf � nf ��2
1=2
u Wi

p
h
��vs � ns + vf � nf ��2

0
(3.94)

The stress boundary interface equilibrium, which relates the �uid resultant stresses

(�f) and the structural stresses (�s), becomes [23,24]

Wi

���s � ns + �f � nf ��2�1=2 u Wi
1p
h

���s � ns + �f � nf ��2
0

(3.95)

3-29



The mesh deformation coordinate relationship, which relates elasticity based defor-

mation (dD) and �uid coordinates (xf), becomes [23,24]

Wi

��dD � xf ��2
0
u Wi

��dD � xf ��2
0

(3.96)

It is important to note that the weighting factors still apply to each boundary

interface relationship even after the norms are converted to the standard L2 norm.

Balancing each boundary residual weighting is still essential to properly prioritize

the entire problem.

Determining these weights for a simple steady-state FSI is not straightforward

since four or more domain types are usually considered. For example, a steady-state

FSI problem will consist of a �uid domain, structural domain, an elasticity-based

mesh deformation domain, and a pressure sharing relationship at the �uid-structure

boundary. These four domain types have their own sets of di¤erential equations and

their own meshes. This makes for a complex weighting relationship not typically

observed in single-�eld problems. Residual weights can be applied at three levels.

They could applied at the equation level, the element level, and at the domain level.

Several methods were considered here to �nd the proper residual weights for

an FSI problem. These methods could be applied at any level (element, equation, or

�eld). The �rst method was a no-weighting method. Each equation was weighted

exactly the same across every domain. This method works for a single-domain case,

but rarely worked for FSI problems solved using simultaneous methods.

The second method was a user-de�ned weighting method where the weights

were arbitrarily de�ned by the user. This method works for problems with a known

exact solution. The user can "turn the knobs" of the residual weights until an exact

solution is found. The real problem comes when an FSI problem with an unknown

solution is considered. The user has no idea whether the solution they are getting
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with their prescribed weights is correct or wrong due to improperly applied residual

weights.

The third method is a characteristic unit scaling of the equations. The units

within each equation within each domain could be scaled to produce units of the same

type. Since many di¤erent types of equations are considered in LSFEM (momentum

conservation, energy conservation, mass conservation, variable relationships, deriva-

tive relationships, etc.) they each have their own unit types. These unit types could

be modi�ed to �t any standard unit type such as energy, force, or nondimensional

radians. In this case, each equation is scaled by the units only. Just considering

unit modi�cation is easy for the user to implement and standardize, but it does not

provide prioritization of each �eld or equation relative to the problem accuracy.

The �nal method discussed here was an iterative method. This method was

based on iterating the residual weights, at any level, until the residual error norms

are generally low in magnitude and provide a converged solution. This method

is also completely hands-o¤, but does take more processing time to determine the

weights for a simultaneous solution. This method is based on the assumption that

the overall solution will improve as the residual error values are balanced.

Iterative residual weighting methods are based on the idea that if a particular

error is low, its related residual weighting is also low and that if the error is high, the

residual weighting should also be high. This gives a priority to the portions of the

problem that have signi�cant error and gives a low priority to the portions that have

low error. In other words, if k represents the previous iteration and k+1 represents

the next iteration, the residual weights, Wi, that are speci�ed for each portion of the

problem are represented as

W k+1
i = Rk

i (3.97)

where Ri are the related residual weights for each portion of the problem i. This

provides an equal level of weighting between the residual error and its relative im-
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portance. This relationship has been observed to produce highly oscillatory results.

The residual weights were seen to go "back and forth" where particular domains can

change from a high priority status to a low priority status in one iteration and then

back again to a high priority status for the next iteration. It was observed that

an exponential averaging of the previous iterations residual weights was required to

help smooth the convergence of the residual weights, i.e.,

W k+1
i =

�
Rk
iR

k�1
i

� 1
2 (3.98)

The weights are then nondimensionalized using

W k+1
i =

W k+1
i

NX
i=1

W k+1
i

(3.99)

Iteratively solving for the residual weights is similar to an optimization prob-

lem. The residual weights could be considered the design variables and the residual

errors are the response. An extremely simple move limit scheme could be applied

to the iterative residual weighting scheme to search for the proper residual weights.

In other words, the next iteration�s weights are de�ned as

W k+1
i = min

���Rk
i

�� ;Wlim

�
(3.100)

which will push a given residual weight in the right direction, but it will not exceed

a particular user-speci�ed move-limit Wlim. The weights used here could also be

considered a search direction.

The residual weight averaging scheme shown above can be applied for each

domain (
) and each boundary integral (�). It can also be applied to each norm

governing each equation and within each norm governing each element. In other

words, the weightsWi can be moved within the LSFEM integral and applied to each
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equation,

I (u) =

Z



������
N
eqnsX
i=1

W
i

�
Auh � f

�
i

������
2

0

d
 +

Z
�

������
N�eqnsX
i=1

W
i

�
Buh � g

�
i

������
2

0

d� (3.101)

or can be applied to each element,

I (u) =

N
elemX
e=1

We

Z

e

���Auh � f
���2
0
d
e +

N�elemX
e=1

We

Z
�e

���Buh � g
���2
0
d�e (3.102)

A combination of the above element weighting and equation weighting could be used

as well, i.e.,

I (u) =

N
elemX
e=1

We

Z



������
N
eqnsX
i=1

W
i

�
Auh � f

�
i

������
2

0

d
e+

N�elemX
e=1

We

Z
�

������
N�eqnsX
i=1

W
i

�
Buh � g

�
i

������
2

0

d�e

(3.103)
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IV. The Structural Domain

Several types of analysis were considered in this study for both stand alone structural

problems and FSI problems. These include a one-dimensional Euler-Bernoulli beam,

nonlinear Euler Bernoulli beam, and 2D in-plane elasticity using both the LSFEM

and Weak Galerkin Finite Element Method for both the steady-state and transient

cases.

4.1 Linear Euler Bernoulli Beam

The original Euler-Bernoulli beam equation is represented as

d2

dx2

�
EI

d2ws

dx2

�
= qbending (4.1)

where ws is the vertical bending displacement, qbending is the applied bending load

per unit length, E is the Modulus of Elasticity, and I is the second moment area of

inertia [13,58]. This is a fourth-order, steady-state di¤erential equation. The above

equation was converted into four �rst-order di¤erential equations to conform to the

standard operator A used in the LSFEM formulation. If �s represents the slope of

the bending displacement, V s represents the internal shear force, and M s represents

the internal bending moment, then the single fourth-order equation is converted into

the following system of four �rst-order equations.

@ws

@x
� �s = 0 (4.2)

EI
@�s

@x
�M s = 0 (4.3)

@M s

@x
� V s = 0 (4.4)

@V s

@x
= qbending (4.5)
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Figure 4.1 Plot of Vertical Bending Displacement for a Clamped-Free Beam Using
Linear Euler-Bernoulli Analysis

Figure 4.2 Plot of Bending Slope for a Clamped-Free Beam Using Linear Euler-
Bernoulli Analysis

Next, Euler-Bernoulli beam results were compared to theory. Figure 4.1 and

Figure 4.2 show the results of a clamped beam with a uniform distributed load of

unit value. The results matched theory [59] and veri�es the LSFEM linear beam

structural equations.

4.2 Nonlinear Euler-Bernoulli Beam

The Euler-Bernoulli beam was combined with an axial deformation element to

form a plane frame element for the structural dynamics. The equations generated
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from force and moment static equilibrium (
P
Fx,

P
Fy, and

P
Mz) are

�sA
@2us

@t2
� dN s

dx
= �faxial (4.6)

�sIm
@2ws

@t2
� dV s

dx
= �qbending (4.7)

@M s

@x
� V s +N s@w

@x
= 0 (4.8)

The internal axial force is de�ned by N s, the axial deformation is de�ned by us, �s

de�nes the structure�s material density, Im de�nes the dynamic moment of inertia for

the beam, and A de�nes the beam�s cross-sectional area. Kinematic and constitutive

equations are also required to solve this system of equations [11,60], e.g.,

N s � EA

"
dus

dx
+
1

2

�
@ws

@x

�2#
= 0 (4.9)

M s + EI
@�s

@x
= 0 (4.10)

@ws

@x
� �s = 0 (4.11)

A clamped-clamped beam problem was considered by Reddy as a veri�cation

problem. Numerical results showing maximum beam displacement where shown

in Reddy�s nonlinear FEM book [11]. A maximum beam displacement of 0.7433

was observed by both Reddy and within this dissertation by using the nonlinear

Euler-Bernoulli beam equations within a LSFEM scheme. This provided a quick

veri�cation and showed that the scheme was comparable to at least the 4th digit.

Further veri�cation was performed for a transient scenario later.

4.3 2D Elasticity

An elliptic elasticity formulation was considered. It consisted of only displace-

ments and displacement-gradients as the unknown degrees of freedom. A total of six
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types of degrees of freedom exist for this formulation. The non-elliptic formulation

contained �ve types of degrees of freedom which were displacements and stresses.

The elliptic formulation has six unknowns with eight equations. The displacement

gradients are de�ned as

H1 =
@usx
@x

(4.12)

H2 =
@usy
@y

(4.13)

H3 =
@usx
@y

(4.14)

H4 =
@usy
@x

(4.15)

where usx and u
s
y are the displacements in the x and y directions. These gradients

were then applied to the equilibrium in both the x and y direction and using Hooke�s

Law for plane-stress, we have

��s@
2usx
@t2

+

�
E

1� �2

��
@H1

@x
+ �

@H2

@x

�
+G

�
@H3

@y
+
@H4

@y

�
= �fx (4.16)

��s
@2usy
@t2

+

�
E

1� �2

��
�
@H1

@y
+
@H2

@y

�
+G

�
@H3

@x
+
@H4

@x

�
= �fy (4.17)

where fx and fy are body forces in the x and y direction respectively, G is the

Modulus of Rigidity, and � is Poisson�s ratio. The plane-strain version can also be

used for the constitutive equations. Two extra constraints were applied to make the

formulation elliptic. Symmetry, or rather the equality of the mixed derivative must

be enforced, e.g.,
@H2

@x
=
@H4

@y
(4.18)

@H3

@x
=
@H1

@y
(4.19)

The non-elliptic formulation has �ve unknowns with only �ve equations. The

stresses consist of the normal x stress (�x), the normal y stress (�y), and the shear
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stress (�xy). The shear stress was assumed to be symmetric (�xy = � yx). The

relationships between the displacements and the stresses are de�ned as (through

Hooke�s Law for plane-stress)

�sx =
E

1� �2

�
@usx
@x

+ �
@usy
@y

�
(4.20)

�sy =
E

1� �2

�
�
@usx
@x

+
@usy
@y

�
(4.21)

�sxy = G

�
@usx
@y

+
@usy
@x

�
(4.22)

and the equilibrium equations become

��@
2usx
@t2

+
@�sx
@x

+
@�sxy
@y

= �fx (4.23)

��
@2usy
@t2

+
@�sxy
@x

+
@�sy
@y

= �fy (4.24)

For the transient case, additional relationships are needed for both the displacement-

displacement gradient and displacement-stress formulations. Equations that relate

displacements and displacement velocities are used in the form

@usx
@t

= vsx (4.25)

@usy
@t

= vsy (4.26)

where vsx and v
s
y are the velocities in the x and y directions respectively.

The above elasticity formulations will be compared to the standard WGFEM

formulation for elasticity for two problems with a known exact solution. The

WGFEM formulations will now be discussed.
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4.4 Weak Galerkin Finite Element Method

The Weak Galerkin approaches taken within this research use traditional �nite

element schemes for two-dimensional elasticity and Euler-Bernoulli beams. The tra-

ditional approaches are based on energy principles. In these cases, the Principle of

Minimum Potential Energy (PMPE) is used to create useful equations for discretiza-

tion. PMPE is a useful form since it is a minimization problem that exhibits clear

elliptic behavior and has a unique solution [43]. In addition, if all formulated equa-

tions are of the same form, such as energy, then there are no issues with functional

weighting.

4.4.1 WGFEM Two-Dimensional Elasticity. The potential energy of a

linearly elastic structure can be written in the form

�p = Ue + 
p (4.27)

where Ue is the strain energy of the system and 
p is the potential of applied loads.

For a system with unknown structural displacements U (discretized in the same way

as in (3.17)), the strain energy is de�ned as

Ue =
1

2
UTKU (4.28)

and the potential of applied loads is de�ned through [43]


p = �UTF (4.29)

Equilibrium is determined when the potential energy reaches a stationary state.

The principle states that equilibrium is achieved when �
p = 0 for any small ad-

missible variation of the con�guration. The variation is applied to all displacement
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responses in the system [43], i.e.,

��p =
@�p
@U1

�U1 +
@�p
@U2

�U2 + � � �+
@�p
@Um

�Um = 0 (4.30)

The potential energy is a functional de�ned completely as

�p =

NeX
e=1

Z �
1

2
f"gT E f"g � f"gT E f"0g+ f"gT f�0g

�
dV

�
NeX
e=1

Z
fugT ffbg dV �

NeX
e=1

Z
fugT f�g dS (4.31)

where

f"g = [B]U (4.32)

[B] is the di¤erential-shape operator and is speci�cally identi�ed here for two-

dimensional elasticity to be the strain-displacement relationships. It is identi�ed

as

[B] =
�
A 1; A 2; : : : ; A Nn

�
= [A ] (4.33)

where

A i =

26664
@
@x

0

0 @
@y

@
@y

@
@x

37775 i (4.34)

[E] is de�ned by Hooke�s Law and can be de�ned for either plane-stress as

[E] =
E

1� �2

26664
1 � 0

� 1 0

0 0 1��
2

37775 (4.35)
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or for plane-strain as

[E] =
E

(1 + �) (1� 2�)

26664
1� � � 0

� 1� � 0

0 0 1�2�
2

37775 (4.36)

The body force, fb, is a vector de�ned for both the x and y directions as

fb =

8<: fx

fy

9=; (4.37)

and � are the surface tractions acting on the boundary

� =

8<: �x

�y

9=; =

8<: �sx cos � + �sxy sin �

�sy sin � + �sxy cos �

9=; (4.38)

Initial stresses f�0g and initial strains f"0g are also a part of the potential energy

functional [43].

The variation of (4.31) yields the Ke and Fe matrices for in-plane elasticity.

The element Ke matrix is de�ned as [43]

Ke =

Z



[B]T [E] [B] d
 (4.39)

and the WGFEM Fe matrix is de�ned as

Fe =

Z



NT ffbg d
 +
Z
�

NT f�g d� (4.40)

where Ke and Fe are assembled into the global matrices K and F .

This method is a primal method where only the displacements are the unknown

degrees of freedom. The stresses are recovered from each element�s displacement
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vector (de) using a post-processing method, i.e.,

f�eg =

8>>><>>>:
�sx

�sy

�sxy

9>>>=>>>; = [E] [B] fdeg (4.41)

This method will show a reduction in accuracy of the secondary variables, which

are the stresses in this case, because of the di¤erential operator being applied to

the shape functions and reducing the polynomial order of the approximated stress

response.

Comparing a mixed method, such as mixed LSFEM, to a primal method, such

as traditional WGFEM, it is apparent that the primal methods will have fewer

degrees of freedom and should have lower memory requirements and computational

time, but will sacri�ce accuracy of the secondary variables. In addition, primal

methods cannot directly share the secondary variables with other domains without

a loss in order of accuracy.

4.4.2 WGFEM Euler-Bernoulli Beam. The WGFEM K matrix is formed

through the integral

Ke =

Z



BTEIBd
 (4.42)

where EI is the �exural rigidity (modulus of elasticity E multiplied by second mo-

ment area of inertia I) and the shape-di¤erential operator is de�ned as

B =
d2N

dx2
(4.43)

The beam formulation using WGFEM requires shape functions with a mini-

mum p-value of 3 and C1 continuity. The minimum p-value is needed due to the

second order derivatives found in the sti¤ness matrix formulation. The Jacobi full-

tensor product shape functions used in the �rst order LSFEM formulations are no
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longer applicable here. The shape functions used for this analysis are prescribed by

Cook as [43]

 1 =
1

4

�
2� 3� � �3

�
(4.44)

 2 =
1

4

�
1� � � �2 + �3

�
(4.45)

 3 =
1

4

�
2 + 3� � �3

�
(4.46)

 4 =
1

4

�
�1� � + �2 + �3

�
(4.47)

These shape functions have unique properties where the evaluation of shape functions

at nodes have either a value of 0 or 1 at the node locations (� = [�1; 1]).  1

corresponds to the bending displacement at the left node ( 1 (� = �1) = 1),  2
corresponds to the bending slope at the left node

��
d 2
d�

�
�=�1

= 1

�
,  3 corresponds

to the bending displacement at the right node ( 3 (� = 1) = 1), and  4 corresponds

to the bending slope at the right node
��

d 4
d�

�
�=1

= 1

�
. Each shape function is

equal to zero for all other values and derivative values at the nodes.

4.4.3 Transient Discretization of WGFEM. Transient WGFEM formula-

tions take the standard form

M
d2U

dt2
+ C

dU

dt
+KU = F (4.48)

where M is the mass matrix and C is the damping matrix. For this research,

damping was ignored and the sti¤ness matrix was described in sections 4.4.1. The

consistent mass matrix takes the form

M =

Z
V

�NTNdV (4.49)

which is a volumetric integral [43]. Traditionally, mass matrices developed using

WGFEM are either lumped, consistent, or coupled. The lumped case literally

4-10



"lumps" the mass of the element at the nodes. This method is very simple to

implement and is accurate for low p-values with elements with little variance in the

density throughout the element. The consistent case (4.49) uses the shape functions

to describe how the material is distributed throughout the element volume. The

consistent method is not always the most e¢ cient method due to poor "banding" of

the mass matrix, but this method is essential for accuracy when considering higher

p-values. The coupled case mixes both the lumped and consistent methods to

average lower and upper bounds on frequency provided by lumped and consistent

respectively, for traditional one-dimensional �nite elements with low p-order.

The natural frequencies of the temporal problem are produced by assuming

simple harmonic motion, thereby converting the di¤erential equation (4.48) into an

eigenvalue problem, i.e., �
K � !2nM

�
U = 0 (4.50)

The natural frequencies and their respective eigenvectors found using this method

are reasonably accurate [43]. Conversely, the eigenvalue problem created by the

LSFEM temporal structural case is nonlinear; hence, it is rarely used [14]. Thus,

WGFEM is the preferred method for �nding structural natural frequencies.

If a time history is desired, the time derivative in (4.48) can be discretized

using a simple central di¤erence method, e.g.,

�
d2U

dt2

�
n

=
Un+1 � 2Un + Un�1

(�t)2
(4.51)

The equation (4.48) now takes the discretized form

�
1

(�t)2
M +K

�
Un+1 = Rn +

2

(�t)2
MUn �

1

(�t)2
MUn�1 (4.52)

where Un and Un�1 are solved or given to �nd the next time step�s response Un+1 [43].
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Figure 4.3 Boundary Conditions for Timoshenko and Goodier Problem Over Rec-
tangular Domain

4.5 Example Elasticity Problems

4.5.1 Serendipity vs. Full-Tensor Product Jacobi Shape Function. An elas-

ticity problem with a known exact solution was considered to examine the di¤erences

between the serendipity expansion and the full-tensor product Jacobi expansions.

Timoshenko and Goodier provided a problem with a known stress �eld [61, 62].

One advantage of this problem is that the boundary conditions are relatively simple

and no body forces are applied. Figure 4.3 shows the rectangular domain with

given boundary conditions. For this problem, the parameters were speci�ed using:

A = B = 0:5, � = �, c = 0:5, and L = 1:0. Figure 4.4 shows the exact solutions

for this problem. The exact stress equations were provided by Fung [61] and Timo-

shenko and Goodier [62] and the exact displacement results were shown by Wickert

and Can�eld [63].

The problem was solved using both serendipity elements and full-tensor prod-

uct elements. The non-elliptic elasticity formulation was applied using LSFEM.

A p-re�nement plot was generated comparing the LSFEM residual with respect to

number of degrees of freedom. The p-re�nement plot is generated by holding a

mesh constant while re�ning the p-value (Figure 4.5). The serendipity element

results were provided by Douglas Wickert [63].

4-12



u v

σx
σy τxy

Figure 4.4 Thumbnail Plots of Exact Solution of Timoshenko and Goodier Prob-
lem

Figure 4.5 Comparison Between Serendipity Shape Functions and Full Tensor
Product (FT) Shape Functions for Timoshenko and Goodier Elasticity
Problem
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Figure 4.6 h-Convergence: 2D Elasticity Using Displacement-Displacement Gra-
dient Formulation for Timoshenko and Goodier Elasticity Problem

The results show that the full-tensor product elements can exhibit a smaller

overall residual error value for the same value of p. However, in this case, the

serendipity elements may have fewer degrees of freedom. To examine e¢ ciency,

vertical slices of the graph, in Figure 4.5, show that the serendipity elements can

exhibit better residual values for a given number of degrees of freedom. This is

shown where the serendipity element p-re�nement curves cross the full-tensor product

curves.

4.5.2 Elliptic vs. Non-Elliptic Comparison.

4.5.2.1 Timoshenko & Goodier Synthetic Elasticity Problem. To

examine the convergence rates between elliptic and non-elliptic formulations the same

two-dimensional elasticity problem was considered [61,62]. Using h-re�nement, the

results of the elliptic di¤erential equations are shown in Figure 4.6. The slopes (m)

are de�ned for each line of constant p-value and the error shown was generated using

the least-squares residual.

Ignoring the machine error on the bottom of the graph, the results show an

average convergence average slope was less than p. In fact, the average slope was
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Figure 4.7 h-Convergence: 2D Elasticity Using Displacement-Stress Formulation
for Timoshenko and Goodier Elasticity Problem

about p�0:5. The slopes shown here were less than the LSFEM residual convergence

rates shown by Jiang (3.40) [9]. The second formulation consisted of the non-elliptic

form of the plane stress equations. Figure 4.7 shows the relevant results.

The convergence rates for the non-elliptic formulation were very similar to the

elliptic formulation (p � 0:5). It appears there was little di¤erence between the

elliptic and non-elliptic residual error rates. In practical implementation, there may

or may not be any real di¤erences between a well-posed elliptic and non-elliptic

formulation when using LSFEM. It has been shown here, for a simple problem,

that the residual convergence rates are similar, but are slightly less than the rates

guaranteed by Jiang.

4.5.2.2 Manufactured Elasticity Solution. To fully examine the dif-

ferences between elliptic and non-elliptic results, response error measure must be

examined instead of simply examining the least-squares residual. A response error

norm

Error =
��uexact � uFEM

��
0

(4.53)
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was integrated over the entire domain. It explicitly takes the form

��uexact � uFEM
��
0
=

24 NeX
e=1

0@Z



�
u (�; �)exact � u (�; �)FEM

�2
d


1A35 1
2

(4.54)

This compares the �nite element solution to a known exact solution that was created

for each elasticity response for both the elliptic and non-elliptic forms. A new

synthetic problem was created for this comparison. Manufactured problems have

been commonly used to verify analysis code [64].

A fairly complex horizontal displacement �eld was assumed as

usx (x; y) =
�
7x+ x7

�
cos (�y) (4.55)

A vertical displacement �eld was then created by solving for a usy (x; y) such that

no horizontal body forces (fx) exist. After that, the stresses were created using

the stress-displacement relationships which only consist of derivatives of usx and u
s
y.

This resulted in relationships for all responses where vertical body forces (fy (x; y))

are nonzero. The exact solution equations of all primary and secondary responses

are shown in Appendix C.

The exact equations were applied at the edges of a square domain. All bound-

ary conditions were based on the exact solutions evaluated at the boundary edges.

Figure 4.8 shows the responses that were constrained at each wall for both the

non-elliptic and elliptic formulations. Figure 4.9 shows the exact solution for this

problem for displacements and stresses only.

The manufactured elasticity problem was solved using both elliptic (u-H) and

non-elliptic (u-�) formulations. Convergence rates based on slopes of h-re�nement

curves were generated and then compared to theory using the response L2 error

norms (3.38) and (3.39) as shown by Jiang [9]. Figures 4.10 and 4.11 show a pri-

mary response, horizontal displacement, for both the non-elliptic form and elliptic
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Figure 4.9 Thumbnail Plots of Exact Solution of Synthetic Problem Created for
LSFEM vs. WGFEM Comparisons
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Figure 4.10 h-Re�nement Plot for Primary Response for Elliptic Formulation (u-
H) for Manufactured Elasticity Problem

form respectively. Figures 4.12 and 4.13 shows a secondary response for both formu-

lations. The response H1 was shown for the elliptic form and �x for the non-elliptic

form.

The primary response for both the elliptic and non-elliptic formulations dis-

played almost identical convergence rates. In addition, the convergence rates for the

displacement response for both elliptic and non-elliptic formulations were all greater

than p+1. The rates shown here met the minimum convergence rates expected for

elliptic formulations and exceeded the convergence rates guaranteed for non-elliptic

formulations.

The secondary responses for both formulations also exhibited very similar con-

vergence rates. There was very little di¤erence observed between the elliptic and

non-elliptic formulations. The average convergence rates observed for the secondary

responses did not always exceed p + 1. However, the rates shown here were very

close to theoretical convergence rates for the elliptic formulation. In fact, the average

convergence rate observed for the secondary responses is p+ 0:8351.
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Figure 4.11 h-Re�nement Plot for Primary Response for Non-Elliptic Formulation
(u-�) for Manufactured Elasticity Problem

Figure 4.12 h-Re�nement Plot for Secondary Response for Elliptic Formulation
(u-H) for Manufactured Elasticity Problem
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Figure 4.13 h-Re�nement Plot for Secondary Response for Non-Elliptic Formula-
tion (u-�) for Manufactured Elasticity Problem

Most interestingly, there was no di¤erence in accuracy between the elliptic and

non-elliptic formulations. This is bene�cial since the non-elliptic formulation has

secondary variables, stresses, which are much easier to handle for use with boundary

conditions and for FSI coupled problems. Pontaza and Reddy [18] have discussed

the fact that even if no proof exists for non-elliptic formulations it does not mean

that it cannot achieve equal convergence rates. It was shown that at least for

this problem, there is no signi�cant di¤erence between the elliptic and non-elliptic

formulations.

4.5.3 Mixed Least-Squares FEM vs. Primal Weak Galerkin FEM Compari-

son. The above synthetic problem was used to compare LSFEM and WGFEM

response errors and convergence rates. The �rst comparison was accomplished by

examining hp-re�nement curves. These curves are created by increasing the p-

value (increase order of polynomials) and increasing the h-value (coarsen mesh), but

maintaining the number of degrees of freedom (40 modes). Figure 4.14 shows the

hp-re�nement results for LSFEM and WGFEM using the L2 error norm. The non-
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Figure 4.14 hp-Re�nement Curves Comparing LSFEM and WGFEM Results for
a Manufactured Elasticity Problem

elliptic formulation was used for the LSFEM analysis. Integrated error norms are

shown for all primary and secondary response types (displacements and stresses).

As expected, the hp-re�nement results exhibited the same slope for error of each

variable. However, the LSFEM curves show a small di¤erence between the primal

variables (usx; u
s
y) and the secondary variables (�x; �y; �xy) whereas the WGFEM

curves show a larger di¤erence between the primal and secondary variables. This

is expected since LSFEM contains the secondary variables as degrees of freedom

directly where WGFEM obtains the secondary variables through a post-processing

of the previously solved primal variables.

The next analysis compared the h-re�nement curves. Figure 4.15 shows the

error results for the primal variables u and Figure 4.16 shows the error results for

the secondary variable �xy using the L2 error norm. Ignoring the machine error

at the bottom of the graphs, the primary variable results show WGFEM has a

slightly better error value and slightly better slope. Alternatively, LSFEM shows

a slightly better error value and slope for the secondary variable. The average

slope for the WGFEM response was approximately p + 1 for the primary variable

and approximately p for the secondary variable. The average slope for the LSFEM
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Figure 4.15 h-Re�nement Curves Comparing LSFEM and WGFEM Results for
Primal Variable u for a Manufactured Elasticity Problem

response was similar for both the primary variable and secondary variables. The

secondary variable was very near p + 1, but more speci�cally, showed an average

slope of p + 0:8351 across all secondary response types (includes �x, �xy, and �xy).

LSFEM does a decent job of approximating the primary and secondary variables

with similar convergence rates that are either very close to the elliptic convergence

rate bound or exceed it.

The biggest advantage of WGFEM is that it only uses the displacement vari-

ables as degrees of freedom. That means LSFEM used 2.5 times as many degrees of

freedom to solve the same problem. WGFEM shows an obvious increase in e¢ ciency

over LSFEM.

Primal WGFEM has been the method of choice for years and has traditionally

shown success. Mixed WGFEM methods have not shown as consistent results.

Selecting a mixed formulation for Weak Galerkin has been di¢ cult and, of this date,

no one has proven that any one mixed Weak Galerkin method to work as well as

the traditional primal WGFEM. Conversely, LSFEM has shown great success for

mixed formulations but has not shown strong success for primal formulations in two-
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Figure 4.16 h-Re�nement Curves Comparing LSFEM and WGFEM Results for
Primal Variable �xy for a Manufactured Elasticity Problem

dimensional domains. Ck element continuity must be applied for primal LSFEM

formulations [65].

The justi�cation for a mixed method comes when considering FSI problems.

Secondary variables, such as stress, may need to be recovered directly in order to

perform a simultaneously coupled and uni�ed formulation. LSFEM can provide

the secondary variables directly and with a higher convergence rate than WGFEM.

Using this type of coupling and uni�ed formulation may provide improvement in

error for FSI.

4.6 Elasticity-Based Mesh Deformation

As shown above, the primal WGFEM formulation is more e¢ cient than the

mixed LSFEM formulation due to its reduced number of degrees of freedom. When

using an elasticity-based mesh deformation scheme for the �uid domain, e¢ ciency

should take precedence over accuracy. The �uid mesh deformation is arbitrary in

the �rst place and does not need a high level of accuracy to accomplish its primary

objective, which is to move a �uid domain mesh while maintaining element aspect
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ratios. It would seem that WGFEM would be the optimal choice in this case due

to its e¢ ciency.

Since accuracy is not an issue, the mixed LSFEM formulation can be converted

to a more e¢ cient form. The use of condensation (3.56) and recovery (3.54) with the

mixed LSFEM formulation could be used to reduce the number of LSFEM degrees

of freedom. The secondary stress variables can be condensed and recovered from the

primal displacement variables, because only displacement boundary conditions and

no stresses are applied to the mesh deformation �eld. This results in a formulation

just as e¢ cient as primal WGFEM. However, this reduced LSFEM formulation is

not nearly as accurate as the full mixed LSFEM formulation. Some simple example

cases were examined and have shown an extreme loss in accuracy when all the

secondary responses are condensed out of the problem.

4.7 Transient Formulation Study

The methods used to discretize the temporal structural problem were exam-

ined here. Several options exist for two-dimensional elasticity. The options used

extensively by Kayser-Herold and Matthies [23] include a formulation that consists

of only displacement velocities and stresses (v-�) and a formulation that consists of

displacement velocities and displacement gradients (v-H). Kayser-Herold showed

that the v-H formulation was elliptic, but the v-� formulation showed results with

accuracy equal to or better than the v-H formulation even though it was non-elliptic.

They used the v-� formulation as their primary analysis method after the accura-

cies were compared between the formulations [23]. The most interesting feature

of their formulations is that neither formulation used primary variables, the dis-

placements, as a direct response. Both types of responses were of secondary type

only. The displacements were recovered between each iteration for plotting or for

use within a coupled problem, such as mesh deformation. They observed accurate
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post-processing of primary variables, but these were not directly recoverable within

the LSFEM scheme.

The v-� formulation consisted of determining equilibrium in terms of displace-

ment velocities and stresses, i.e.,

��@v
s
x

@t
+
@�sx
@x

+
@�sxy
@y

= �fx (4.56)

��
@vsy
@t

+
@�sxy
@x

+
@�sy
@y

= �fy (4.57)

The stress-displacement-velocity relationships were also required. They were gen-

erated by taking the time derivative of the plane-stress stress-displacement relation-

ships (4.20), (4.21), and (4.22):

@�sx
@t

� E

1� �2

�
@vsx
@x

+ �
@vsy
@y

�
= 0 (4.58)

@�sy
@t

� E

1� �2

�
�
@vsx
@x

+
@vsy
@y

�
= 0 (4.59)

@�sxy
@t

�G

�
@vsx
@y

+
@vsy
@x

�
= 0 (4.60)

This formulation had �ve equations with �ve unknowns but required the displace-

ments to be post-processed from the displacement velocities. The velocity boundary

conditions used by Kayser-Herold and Matthies were capable of capturing the entire

system�s boundary conditions. Direct application of the displacement boundary

conditions were not required for the problems they solved.

Another option, not examined by Kayser-Herold and Matthies, was the u-

v-� formulation. It includes the secondary variables, displacement velocities and

stresses, and it includes the displacements as primary variables. This allows the

primary variables to rest within the LSFEM scheme and it allows the displacements

to be directly recoverable and directly shared within a coupled problem. Equations
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that relate displacements and displacement velocities are

@usx
@t

� vsx = 0 (4.61)

@usy
@t

� vsy = 0 (4.62)

This formulation has seven equations with seven unknowns. It uses the displacement-

displacement velocity relationships (4.61) and (4.62) with (4.56), (4.57), (4.20),

(4.21), and (4.22). If a mixed LSFEM formulation is desired for coupled prob-

lems, its respective improvement in accuracy with respect to the secondary variables

is desired, and not much concern exists for memory limits, then it should become

bene�cial to use the full u-v-� formulation over the v-� formulation.

Three questions must be answered when considering the above elasticity for-

mulations. First, does a space-time coupled formulation increase accuracy over

space-time decoupled formulations? It has been shown before that a space-time

coupled approach can perform better than a space-time decoupled approach [17]

and it has been noted to perform worse [9] for particular methods. Second, must

an elliptic approach be used over a non-elliptic approach? Finally, if a non-elliptic

approach is accurate, does it matter if the user solves the displacements with the

�nite element system or if the displacements are recovered between each iteration?

A simple study was performed to help answer these questions. The one-

dimensional wave equation problem was considered here to help provide insight into

these questions. The wave equation was used because of its simplicity and its

similar characteristics to the two-dimensional transient elasticity equations. The

one-dimensional wave equations can be extended to two-dimensional wave equations,

which are closely related to two-dimensional elasticity [23]. The similarities that are

of the most interest here are 1) the primary variables may or may not be contained

within the formulation, 2) the secondary variables consist of both spatial or temporal
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derivatives of the primary variables, and 3) the system can be cast in an elliptic or

non-elliptic form.

The original one-dimensional wave equation takes the form

@2u

@t2
+ c2

@2u

@x2
= f (4.63)

where u is the primal variable, f is the forcing function, and c is the wave speed.

The second-order di¤erential equation is reduced to its mixed �rst-order form before

being implemented into LSFEM. The �rst-order form is

@v

@t
� c

@p

@x
= f (4.64)

where v and p are secondary variables which are de�ned as

v =
@u

@t
(4.65)

p = c
@u

@x
(4.66)

The symmetry constraint can be added to create an elliptic formulations, i.e.,

@p

@t
� c

@v

@x
= 0 (4.67)

The elliptic formulation combines (4.64) and (4.67). This formulation only

uses secondary variables within the LSFEM scheme [23]. This means that the

primal variable must be recovered between each time step using the �-method

un+1 = un +�t [�vn+1 + (1� �) vn] (4.68)
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The Crank-Nicolson method (� = 0:5) was used here for all space-time uncoupled

schemes. The non-elliptic formulation combines (4.64), (4.65), and (4.66). This

formulation directly recovers the primal variable and does not require (4.68) [23].

A problem with a known exact solution was considered here [66]. The problem

displays a near-discontinuity in its results. This more challenging problem should

help di¤erentiate between the advantages and disadvantages of various methods.

The boundary conditions applied here are u (0; t) = u (L; t) = v (0; t) = v (L; t) = 0.

The initial conditions are u (x; 0) = 0:25x (L� x) and p (x; 0) = 0. For these

conditions, the solution may be expressed as a Fourier series,

u (x; t) =
L2

�3

1X
n=1

�
1� (�1)n

n3
cos
�n�c
L
t
�
sin
�n�
L
x
��

(4.69)

which uses the superposition of an in�nite number of harmonic waves [12]. The time

step size was determined through the Courant-Friedrich-Lewy (CFL) Condition

�t =
CFL �min (h)

c
(4.70)

where the maximum possible stable time step size is generated when CFL ! 1:0.

A CFL of 0.9 was used in this study. The exact results for 0 � t � 0:12 are shown

in Figure 4.17.

Six cases of the above problem were considered. A combination of the space-

time coupled formulation and uncoupled formulation were considered with the elliptic

formulation and non-elliptic formulation with varying p-values. The L2 error norms

were computed for each response type.

This study showed that there was no di¤erence in accuracy between the elliptic

and non-elliptic formulations when the space-time uncoupled scheme was considered

(case #1 vs. case #2). In other words, it doesn�t matter which equation set is

used for the uncoupled case and it doesn�t matter whether the primal variables
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Figure 4.17 Thumbnail Plots of Exact Results for One-Dimensional Wave Equa-
tion Example Problem (0 � t � 0:12)

Case x,t Coupled Elliptic p-value �t u Error p Error v Error
1 No No 5 0.04 4.177E-05 1.416E-03 1.416E-03
2 No Yes 5 0.04 4.177E-05 1.416E-03 1.416E-03
3 Yes No 5 0.04 5.947E-07 1.143E-04 1.150E-04
4 Yes Yes 5 0.04 3.446E-05 1.090E-04 1.089E-04
5 Yes No 10 0.04 3.603E-07 4.724E-05 4.500E-05
6 Yes No 3 0.12 1.966E-05 1.372E-03 1.107E-03

Table 4.1 One-Dimensional Wave Study Case Results
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are recovered during or after each iteration. This was expected since the LSFEM

temporal discretization is the same as the temporal discretization used to recover

the primal variables.

When the coupled case was considered (case #3 vs. case #4), the accuracy of

the secondary variables was exactly the same for the elliptic and non-elliptic cases;

however, the primal variable accuracy improved signi�cantly with the non-elliptic

case. This is because the primal variables were solved during each iteration of the

non-elliptic case instead of being recovered between each iteration in the elliptic case.

In the coupled case, the LSFEM temporal discretization is the same as the spatial

discretization for secondary variables in both formulations, but not for the primary

variable in the elliptic case.

Case #5 shows an improved accuracy compared to case #3 due to a large

increase in p-value. This was expected and shows a higher �delity in both the

spatial and temporal derivatives.

In case #6, the time step size was increased signi�cantly. This case was still

coupled and was compared to case #1. This comparison shows that the �-method

discretized form has 3 time steps while the LSFEM discretized polynomial has an

order of 3 in the temporal coordinate direction. This is not a pure "apples-to-apples"

comparison, but it does show a general relationship when the same number of "time

steps" were used. In this case, the LSFEM x; t-coupled discretization performed

slightly better.

4.7.1 Transient Structural Problems. Kayser-Herold and Matthies experi-

enced signi�cant challenges when using LSFEM for a transient elasticity problem [23].

They examined a transient structural problem using several di¤erent systems of dif-

ferential equations. They showed both elliptic and non-elliptic formulations. These

formulations included displacement velocities with stresses (v-�), displacement veloc-

ities with displacement gradients (v-H), and displacement velocities with a linearized
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Figure 4.18 Transient Elasticity Problem Setup

stress tensor (v-m). All of these formulations were shown to be extremely sensitive

to their equation residual weighting factors and all formulations were not shown to

be equivalent to a WGFEM transient elasticity analysis. The best results found by

Kayser-Herold and Matthies were shown by the displacement velocities with stresses

formulation (v-�), which is a non-elliptic formulation. Those results were close to

WGFEM results, but they were not identical. In addition, when the LSFEM (v-�)

formulation was used in a transient FSI problem, the structural results provided

additional structural damping to the system and produced incorrect results.

There were two major issues with their elasticity analysis. First, the equation

residual weights that yielded a fairly accurate answer were found using a manual

trial and error method. Second, the time step used for the LSFEM analysis was

too large [23]. It is unknown why they did not try a smaller time step. The same

transient elasticity problem solved by Kayser-Herold and Matthies was examined

here but the two issues that plagued their results were avoided.

A beam which is clamped on both the left and right ends was considered here

(Figure 4.18) [23]. The beam was 10 meters long and 1 meter high. Material

properties were applied in a uniform manner across the entire beam. The Modulus

of Elasticity was E = 105 Pa, Poisson ratio was � = 0:35, and the structural mass

density was �s = 1:0 kg=m3. No loads are applied to the beam at any time and

damping was not considered. The beam was discretized using 10 spanwise elements.

A p-value of 4 was used throughout this elasticity study.
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# !f (Hz)
1 3.2498
2 8.2712
3 14.8625
4 16.9930
5 22.4635
6 30.7393
7 33.8673
8 39.4714
9 48.5171
10 50.4871

Table 4.2 WGFEM Natural Frequency Results for Double Clamped Beam

Using a WGFEM analysis, the �rst ten natural frequencies were found (Ta-

ble 4.2). These natural frequencies match results obtained by Kayser-Herold and

Matthies using ANSYS 7.0.

The largest relevant frequency found by theWGFEM frequency analysis helped

determine the proper time step size to use for explicit time integration. The largest

frequency drove a time step size of �t = 0:0005. This time step size was used

to determine the transient response of the double clamped beam problem. It was

observed here that a larger time step size, such as �t = 0:01, will generate results

which exhibit inaccurate damping. Using the proper time step size is critical in

determining the transient response [43]. Since the natural frequencies found using a

WGFEM analysis are more accurate than those found using a LSFEM analysis [14],

it is suggested that WGFEM be used before ever using a LSFEM structural analysis

so that the largest frequencies can be found to help determine the proper time step

size.

A transient response was created using an initial condition of

vsy = sin
��x
10

�
(4.71)
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Figure 4.19 Transient Response of the Double Clamped Beam Problem Using
WGFEM (Mid-Node Vertical Deformation History)

Figure 4.20 FFT of the Double Clamped Beam Transient Response Using
WGFEM (Mid-Node Vertical Deformation Power Spectrum Plot)

which creates only an initial vertical velocity to generate structural motion. The

transient response of the double clamped beam was found to be neutrally stable.

This was expected, since there were no damping mechanisms applied to the system

and no loads were applied. Figure 4.19 shows the response history of the beam and

Figure 4.20 shows a Fast Fourier Transform (FFT) of the response history. The

response history shows a perfectly neutrally stable response. The FFT shows that

the 1st and 3rd natural frequencies were excited by the applied initial conditions.

Di¤erent initial conditions would excite other natural frequencies.
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Equation Type Final Residual Weights (Wi)
Force Equilibrium 0.0157592
Displacement-Stress Relationship 1.1895518
Displacement-Displacement Velocity Relationship 0.0001000

Table 4.3 Equation Weightings for LSFEM 2D Elasticity

The WGFEM response produced an accurate benchmark to compare LSFEM

results. The same problem was solved using a 2D in-plane elasticity LSFEM (u-v-

�) formulation. This formulation was used so all primary variables and secondary

variables are directly recoverable and sharable. This is useful in a coupled scheme,

such as FSI. The same time step size was used as in the WGFEM analysis. In

addition, it was found that residual balancing at the equation level was essential

to solve the transient elasticity LSFEM problem. The iterative residual balancing

approach was used with success here (3.101). Table 4.3 shows the �nal equation

weights generated by the iterative residual balancing approach at the equation level.

The results found using the LSFEM 2D Elasticity formulation were directly

comparable to the WGFEM results (Figure 4.21 and Figure 4.22). The magnitudes

and frequencies match. This shows that LSFEM can be accurate for transient

elasticity analysis, as long as residual weighting at the equation level is considered

and the proper time step size is used.

The above solution veri�es LSFEM when using 2D in-plane elasticity. A

comparable 1D solution is useful here for veri�cation purposes. The same problem

was solved using both linear and nonlinear Euler-Bernoulli beam equations. A

time step size of �t = 0:01 was used for the 1D problem. Figure 4.23 shows the

temporal response and Figure 4.24 shows the frequency response for both the linear

and nonlinear beam. In both cases, the results compare directly to the WGFEM

and LSFEM in-plane elasticity analysis. The results were just as accurate even with

a larger time step size. The problem did not exhibit nonlinear characteristics and

did not require a nonlinear type of analysis, but it was useful for initial veri�cation
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Figure 4.21 Transient Response of the Double Clamped Beam Problem Using LS-
FEM 2D Elasticity (Mid-Node Vertical Deformation History)

Figure 4.22 FFT of the Double Clamped Beam Transient Response Using LSFEM
2D Elasticity (Mid-Node Vertical Deformation Power Spectrum Plot)
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Figure 4.23 Transient Response of the Double Clamped Beam Problem Using LS-
FEM with Linear (Left) and Nonlinear (Right) 1D Euler Bernoulli
Beam Theory (Mid-Node Vertical Deformation History)

purposes. This implies that the beam de�ections were small enough that nonlinear

e¤ects are not signi�cant. This does not verify the in�uence or di¤erences between

linear and nonlinear beam analysis.

To test the nonlinear e¤ects of the beam, the initial conditions were increased

until a di¤erence was observed between the transient responses. The �rst signi�cant

di¤erence between the linear and nonlinear problems was observed when a velocity

of

vsy = 7:5 sin
��x
10

�
(4.72)

was used for the problem�s initial condition. As shown in Figure 4.25, only a small

di¤erence in peak magnitude (6:35%) was observed between the linear and nonlinear

responses at this particular initial condition. The peak magnitude for the linear

case was 0:441 and the peak magnitude for the nonlinear case was 0:413. It also

appears that the nonlinear response exhibited a slightly di¤erent period than the

linear response. The nonlinear e¤ects exhibited a sti¤ening e¤ect. When a higher

initial condition magnitude was used, the nonlinear problem had great di¢ culty

converging within 100 sub-iterations within each time step. This implies that more
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Figure 4.24 FFT of the Double Clamped Beam Transient Response Using LSFEM
with Linear (Left) and Nonlinear (Right) 1D Euler Bernoulli Beam
Theory (Mid-Node Vertical Deformation Power Spectrum Plot)

signi�cant nonlinear e¤ects are applicable for a magnitude greater than 7:5. A

stronger nonlinear convergence method, such as Newton-Raphson, would help solve

this problem when signi�cant nonlinear e¤ects are present. Unfortunately, only the

direct iteration method was implemented in this research.
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Linear Nonlinear

Figure 4.25 Transient Response Using a Larger Initial Velocity of the Double
Clamped Beam Problem Using LSFEM with Linear (Left) and Non-
linear (Right) 1D Euler Bernoulli Beam Theory (Mid Node Vertical
Deformation History)
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V. The Fluid Domain

5.1 Stokes Linear Flow

The Stokes equations are a linear set of �uid equations that are good for

creeping �ow problems. The Stokes equations governing viscous incompressible

creeping �ow required minimal computational time due to their linearity. The two-

dimensional and elliptic governing equations are summarized as

Mass Continuity:
@vfx
@x

+
@vfy
@y

= 0 (5.1)

Momentum Conservation (x-dir):

@p

@x
+
@!

@y
= fx (5.2)

Momentum Conservation (y-dir):

@p

@y
� @!

@x
= fy (5.3)

Vorticity:
@vfy
@x

� @vfx
@y

= ! (5.4)

Here vfx and v
f
y represent horizontal and vertical velocity, p represents pressure,

and ! represents vorticity [9]. This is a velocity-pressure-vorticity formulation where

vfx , v
f
y , p, and ! are the unknown degrees of freedom of the system.

A driven cavity �ow problem was solved using Stokes equations with the least-

squares �nite element formulation. The problem consisted of a square domain with a

horizontally driven velocity on the top wall. All other walls were speci�ed as no-slip

walls. A reference pressure was provided at the bottom of the cavity. The boundary

conditions are shown in Figure 5.1.
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Figure 5.1 Driven Cavity Flow Boundary Conditions
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Figure 5.2 Driven Cavity Flow Results �Velocity Vector Plot

The results of the driven cavity �ow problem, shown in Figure 5.2, match those

published by Jiang [9]. This veri�es the LSFEM implementation works well for a

Stokes �ow problem. This was as expected due to the smooth continuous solution

which was solved using elliptic equations.

5.2 Navier-Stokes Incompressible Viscous Flow

A two-dimensional time-dependent, incompressible form of the Navier-Stokes

equations using velocity (v), pressure (p), and vorticity (!) are

Mass Continuity:
@vfx
@x

+
@vfy
@y

= 0 (5.5)
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Momentum Conservation (x-dir): �f
@vfx
@t

+ �fv
f
x

@vfx
@x

+ �fv
f
y

@vfx
@y

+
@p

@x
+ �

@!

@y
= fx�f

(5.6)

Momentum Conservation (y-dir): �f
@vfy
@t

+ �fv
f
x

@vfy
@x

+ �fv
f
y

@vfy
@y

+
@p

@y
� �@!

@x
= fy�f

(5.7)

Vorticity:
@vfy
@x

� @vfx
@y

= ! (5.8)

where the steady-state form eliminates the time derivatives shown above [9]. Since

the incompressible assumption holds, �f is constant and is not a direct response. The

above formulation was successfully veri�ed using a simple Blasius plate problem with

a known exact solution. The v-p-! formulation shown above has four equations with

four unknowns. Unfortunately, this formulation does not have degrees of freedom

that are directly sharable with the stress equilibrium at the �uid-structure interface

boundary. An alternate form of the incompressible Navier-Stokes equations uses

�uid stresses (�fx, �
f
xy, �

f
y) instead of vorticity, e.g.,

Mass Continuity:
@vfx
@x

+
@vfy
@y

= 0 (5.9)

Momentum Conservation (x-dir):

�f
@vfx
@t

+ �fv
f
x

@vfx
@x

+ �fv
f
y

@vfx
@y

+
@p

@x
�
 
@�fx
@x

+
@�fxy
@y

!
= fx�f (5.10)

Momentum Conservation (y-dir):

�f
@vfy
@t

+ �fv
f
x

@vfy
@x

+ �fv
f
y

@vfy
@y

+
@p

@y
�
 
@�fxy
@x

+
@�fy
@y

!
= fy�f (5.11)

Normal stress relationship (x-dir):

�fx � 2�
@vfx
@x

(5.12)
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Normal stress relationship (y-dir):

�fy � 2�
@vfy
@y

(5.13)

Shear stress relationship:

�fxy � �

 
@vfx
@y

+
@vfy
@x

!
(5.14)

This v-p-� formulation uses more equations and unknown degrees of freedom than

the v-p-! formulation. The additional stress degrees of freedom are desirable here

since the �uid stresses are used directly when relating Cauchy solid and �uid stress

tensors. Both Navier-Stokes equation sets of equations are non-elliptic.

To verify the Navier-Stokes equations, a simple Blasius Plate problem was used.

This problem consists of viscous uniform �ow over a plate with no-slip conditions.

As Figure 5.3 shows, the left and top walls contain far �eld and uniform boundary

conditions. These walls contain horizontal freestream and no vertical �ow. The

bottom wall is a no-slip wall so both vertical or horizontal velocity components

are set to zero. The right wall contains exit �ow conditions. The vertical velocity

component is set to zero so pure horizontal �ow conditions exist on this boundary.

The pressure at the outlet is set to zero. No horizontal �ow components were speci�ed

on the outlet since the boundary layer will generate a vertical velocity component at

that location. The �ow that develops over the plate shows a growing boundary layer.

The boundary layer thickness at x = 1:0 was designed to be 0:5 inches high according

to Blasius plate theory [67]. A Reynolds number of 100 and a nondimensionalized

in�ow velocity of 0:3 will generate the desired boundary layer thickness.

The problem was solved using 100 elements in a unitary square mesh with a

p-value of 8 (Figure 5.4). Figure 5.5 shows the velocity magnitude results from a

LSFEM analysis. An approximate boundary layer line was drawn on top of the

velocity results. The approximate boundary layer line shows a growing thickness

across the plate and it shows an approximate �nal layer thickness of 0:5 as expected.
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Figure 5.3 Blasius Plate Problem Boundary Conditions

The results are in agreement with the Blasius plate theory. However, the boundary

layer location was identi�ed through a peak value in the velocity instead of using

the standard 99% of the in�ow velocity to identify that location. This di¤erence is

stressed by analyzing the LSFEM velocity results as compared to the known exact

results at the outlet (x = 1:0). The velocity results were plotted with respect to

the vertical coordinate location (Figure 5.6). The maximum velocity shown with

the LSFEM are much higher than that of the analytic results. This is a signi�cant

disparity and it does not change with respect to a �ner mesh or a higher p-value.

5.3 Compressible Euler

5.3.1 Equation Development. The compressible and inviscid �ow equations

in conservation form without body forces are [29,67]

@Q

@t
+
@E

@x
+
@F

@y
= 0 (5.15)
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Figure 5.4 Blasius Plate Mesh

Figure 5.5 Blasius Plate Nondimensionalized Velocity Contour Results With
Boundary Layer Line
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Figure 5.6 Blasius Plate Velocity Results Compared to Exact Solution at x = 1:0

where Q is the conservative vector is de�ned by speci�c mass (�f), speci�c energy

(Et), and speci�c momentum in the x (�fv
f
x) and y (�fv

f
y ) directions, i.e.,

Q =

8>>>>>><>>>>>>:

�f

�fv
f
x

�fv
f
y

Et

9>>>>>>=>>>>>>;
(5.16)

The speci�c energy is de�ned through the internal potential energy (e) and kinetic

energy

Et = �f

�
e+

1

2

����!V ���2� = p


 � 1 +
1

2

��
vfx
�2
+
�
vfy
�2�

(5.17)

E and F are the �ux vectors in the x and y directions, respectively.

E =

8>>>>>><>>>>>>:

�f
e
vfx

�fv
f
x
e
vfx + p

�f
e
vfxvfy

(Et + p)
e
vfx

9>>>>>>=>>>>>>;
(5.18)
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F =

8>>>>>><>>>>>>:

�f
e
vfy

�fv
f
x
e
vfy

�fv
f
y
e
vfy + p

(Et + p)
e
vfy

9>>>>>>=>>>>>>;
(5.19)

The convective velocities evfx and e
vfy are simply vfx and vfy , since the mesh is not

moving. In this case, the �ux vectors become

E =

8>>>>>><>>>>>>:

�fv
f
x

�f
�
vfx
�2
+ p

�fv
f
xv

f
y

(Et + p) vfx

9>>>>>>=>>>>>>;
(5.20)

F =

8>>>>>><>>>>>>:

�fv
f
y

�fv
f
xv

f
y

�f
�
vfy
�2
+ p

(Et + p) vfy

9>>>>>>=>>>>>>;
(5.21)

for a stationary mesh.

The conservation form is not the easiest form to use in a coupled domain

analysis. The conservation variables are not always directly sharable with variables

in other domains. If the user wants to directly share responses with other domains,

the primitive form of the above conservation relationships is useful to develop.

The desired primitive variables are de�ned as

q =

8>>>>>><>>>>>>:

�f

vfx

vfy

p

9>>>>>>=>>>>>>;
(5.22)
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and the desired form of the �nal conservation equations are

@q

@t
+fA1 @q

@x
+fA2 @q

@y
= 0 (5.23)

The matrices fA1 and fA2 now become the linearized portion of the di¤erential equa-
tions that must be iterated to convergence, since the matrices are functions of the

primal responses operated on by spatial derivatives. This form �ts well within the

LSFEM variational scheme. The matrices fA1 and fA2 are created by putting q in
terms of Q, (q (Q)), Q in terms of q, (Q (q)), E in terms of Q, (E (Q)), and F in terms

of Q, (F (Q)). Then the fA1 and fA2 are created [28,29] through the relationships
fA1 = @q (Q)

@Q

@E (Q)

@Q

@Q (q)

@q
(5.24)

fA2 = @q (Q)

@Q

@F (Q)

@Q

@Q (q)

@q
(5.25)

The above process was applied to the two-dimensional conservation form and

created the following primitive form of the compressible, inviscid Euler equations

:Mass Continuity:

@�f
@t

+ �f
@vfx
@x

+ vfx
@�f
@x

+ �f
@vfy
@y

+ vfy
@�f
@y

= 0 (5.26)

Momentum Conservation (x-dir):

@vfx
@t

+ vfx
@vfx
@x

+
1

�f

@p

@x
+ vfy

@vfx
@y

= fx (5.27)

Momentum Conservation (y-dir):

@vfy
@t

+ vfx
@vfy
@x

+ v
@vfy
@y

+
1

�f

@p

@y
= fy (5.28)
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Energy Conservation:

@p

@t
+ p


@vfx
@x

+ vfx
@p

@x
+ p


@vfy
@y

+ vfy
@p

@y
= 0 (5.29)

The one-dimensional form follows similarly

Mass Continuity:
@�f
@t

+ �f
@vfx
@x

+ vfx
@�f
@x

= 0 (5.30)

Momentum Conservation:

@vfx
@t

+ u
@vfx
@x

+
1

�f

@p

@x
= fx (5.31)

Energy Conservation:
@p

@t
+ p


@vfx
@x

+ vfx
@p

@x
= 0 (5.32)

5.3.2 One-Dimensional Veri�cation. The 1D Euler equations were veri�ed

using a classic 1D shock tube problem [9,28]. The solution is known and is commonly

used to test numerical schemes with spatial and temporal derivatives. The shock

tube is assumed to have a nondimensional length of 1.0 and have di¤erent initial

conditions on the left and right hand side of the tube. There exists a strong pressure

and density di¤erential which will create a shock and �uid �ow as soon as the analysis

begins. The following initial conditions are applied to the system:8>>><>>>:
vfx = 0:0

p = 1:0

� = 1:0

9>>>=>>>; for x � 0:5 (5.33)

8>>><>>>:
vfx = 0:0

p = 0:1

� = 0:125

9>>>=>>>; for x > 0:5 (5.34)
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Figure 5.7 Solutions to The Shock Tube Problem (T = 0:14 sec)

The tube was discretized using 100 lengthwise elements with a p-value of 5. A

time step size of 0:005 seconds was used throughout the analysis. The solution was

iterated through 28 time steps (T = 0:14 seconds). The �nal solution responses are

shown in Figure 5.7 and are compared to a known exact solution [28]. Figure 5.8

shows the time history from the initial conditions to the �nal conditions. The �nal

results showed reasonable accuracy compared to results published by Jiang [9] and

the calculated exact solution [28]. The dissipation e¤ects are similar to a �rst-order

accurate �nite volume scheme.

5.3.3 Two-Dimensional Veri�cation. The shock-tube problem veri�ed the

1D Euler Compressible code. The 2D Euler code was veri�ed using a classic airfoil

problem in a uniform �ow �eld. Not only does the airfoil test problem expand

the analysis to two-dimensions, but it tests the e¤ects of characteristic boundary

conditions. The airfoil is a symmetric NACA 0012 airfoil. The advantage of this

airfoil analysis is that experimental results are available for validation purposes [68].

An in�ow Mach number of 0.31 was used at an angle of attack of 4.2o. Several

unique factors were considered to solve this classic airfoil problem. These unique

factors include characteristic boundary conditions, balancing the residual weights

for no penetration boundary conditions, and time stepping towards steady-state for

hyperbolic equations.
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Figure 5.8 Time History of The Shock Tube Problem (0 � T � 0:14)
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5.3.3.1 Characteristic Boundary Conditions. It is well known that

characteristic boundary conditions are essential when considering a compressible and

subsonic �ow �eld [29]. The subsonic and compressible �ow �eld will exhibit �ow

characteristics that are both positive and negative. This means that the charac-

teristic directions at the walls depend on both the inner domain and outer domain.

Considering this, the far �eld cannot simply be "clamped." This creates di¢ cult

boundary conditions for these types of problems since characteristic relationships

must be used at the boundaries, because the Euler equations are considered a hy-

perbolic system [69�72].

Considering a compressible Euler system, there are four eigenvalues, or char-

acteristic values of the system. The eigenvalues are de�ned by the normal vector

(bn), the convective velocity (eU), and the speed of sound (a)
�1 =

��� eU ��� (5.35)

�2 =
��� eU ��� (5.36)

�3 = eU + a jbnj (5.37)

�4 = eU � a jbnj (5.38)

For a subsonic system, the velocities are not greater than a, so �4 is negative. When

considering the boundary characteristics, the in�ow conditions create three upstream

characteristics and one downstream characteristic and the out�ow conditions also

create three upstream characteristics and one downstream characteristic [71]. Figure

5.9 shows the in�ow and out�ow characteristic directions.
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Figure 5.9 In�ow and Out�ow Characteristic BC Directions

The characteristic variables are de�ned through [71,72]

w =

8>>>>>><>>>>>>:

w1

w2

w3

w4

9>>>>>>=>>>>>>;
= L�1q =

26666664
1 0 0 � 1

(ao)
2

0 ny �nx 0

0 nx ny
1
�ao

0 �nx �ny 1
�ao

37777775

8>>>>>><>>>>>>:

�

vfx

vfy

p

9>>>>>>=>>>>>>;
(5.39)

The characteristic variables are conveniently expressed in terms of the primal vari-

ables and the system�s variables. The characteristic relationship at the walls requires

that the magnitude of the characteristic waves pass through the walls without re-

turning. Enforcing this condition will help the solution converge properly. In the

steady-state case, this is simply
dw

dn
= 0 (5.40)

For the transient case, it is stated as

dw

dt
+ �

dw

dn
= 0 (5.41)

where � is a square matrix with the system eigenvalues across the diagonal.

5-14



n
w
)∂

∂
w

x

n
w
)∂

∂

n)

Figure 5.10 Possible Characteristic Response Through Virtual Boundary Wall

Hirsch et al. paid careful attention in developing boundary conditions for

a �nite volume scheme. They ensured that the normal derivatives taken of the

characteristic variables (w) were taken outside the domain or inside the domain

depending on the sign of the characteristic value at the wall [71]. For example,

at an in�ow wall, the 1st, 2nd, and 4th characteristic derivatives were evaluated

outside the domain whereas the 3rd characteristic derivative was evaluated within

the domain. The normal derivatives were based only on a �rst-order �nite volume

scheme. The external derivatives utilized the freestream conditions, whereas the

internal derivatives utilized the internal domain responses. Hirsch et al. assumed

that the slope of the characteristics were discontinuous, within the numerical scheme,

at the wall boundary conditions (Figure 5.10). This is why the derivatives were

evaluated either inside or outside the domain. Great success was observed by Hirsch

et al. when using characteristic boundary conditions with a �nite volume scheme

[71].

A �nite element scheme with these types of characteristic boundary condi-

tions must use similar methods to determine the external derivatives. The internal

derivatives are easily evaluated using the �nite element shape functions within the

domain that border the boundary edge. The external derivatives can be evaluated

by either using a �rst-order �nite volume scheme from the virtual boundary to the

freestream conditions located at in�nity or they can be evaluated by applying an
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Figure 5.11 Non-Re�ective Boundary Conditions Using "In�nite" Elements

extra "strip" of elements to behave as "in�nite" elements [73]. This extra "strip"

of elements can provide a way to determine the external derivatives using the �nite

element shape functions. Figure 5.11 shows an example setup of how and where the

internal and external derivatives can be taken with respect to the inner and outer

strips of elements.

The �nite element derivatives, with respect to the virtual normal boundary,

are generated using
@

@n
= nx

@

@x
+ ny

@

@y
(5.42)

where the spatial derivatives must be expressed in terms of the element�s natural

coordinates,

@

@n
= nx

�
@�

@x

@

@�
+
@�

@x

@

@�

�
+ ny

�
@�

@y

@

@�
+
@�

@y

@

@�

�
(5.43)

and the Jacobian is used to express explicitly the normal derivative operator

@

@n
= nx

�
J�111

@

@�
+ J�112

@

@�

�
+ ny

�
J�121

@

@�
+ J�122

@

@�

�
(5.44)
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Poinsot and Lele made a bold challenge to the characteristic boundary condi-

tions implementation. They stated that the characteristic variables are smooth and

continuous at the virtual boundary [72]. This is extremely useful when using �-

nite element schemes, since the characteristic variables can be evaluated exclusively

within the domain and the responses can be evaluated using �nite element shape

functions. There is no need to apply an extra "strip" of elements around the virtual

boundary or to apply a di¤erent numerical scheme such as a �nite volume scheme

to evaluate the external derivatives. The freestream conditions are applied at the

virtual boundary, since there is no "in�nite" location to apply the freestream val-

ues. The virtual boundary values vary to allow the characteristic waves to pass

through the boundary. It was suggested that the virtual boundary response val-

ues be restrained weakly using weighted boundary values instead of restraining the

values strongly using clamped boundary conditions. In addition, it was suggested

that the in�ow conditions be restrained by the freestream velocities and density val-

ues whereas the out�ow conditions be restrained by only the freestream pressure

values [72].

Table 5.1 shows the various cases analyzed using various non-re�ective char-

acteristic boundary condition methods. Each case was applied to the classic 2D

airfoil problem. Two methods proved to be accurate and convergent. The method

that used a strip of "in�nite" elements was just as accurate as the Poinsot and Lele

method. It seems that either method is a reliable method to apply non-re�ective

boundary conditions that ensures convergence properties and still maintains problem

accuracy.

5.3.4 Euler Time Stepping. Tannehill et al. made the critical note that if

a steady-state solution is desired, it is not always accurate to only use the spatial

derivatives of a hyperbolic system of equations [28]. In other words, time-stepping

is typically required to accurately obtain both steady-state and transient results

when using the compressible form of the Euler equations. Both methods were
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Case # Description Convergence Prop erties Accuracy Prop erties

1 Non-Re�ective Characteristic Boundary Conditions Not Applied D iverged Inaccurate

2 Internal and External Derivatives w ith F in ite D i¤erencing D iverged Inaccurate

3 Internal and External Derivatives w ith Additional Strip of F in ite E lem ents Converged Accurate

4 Internal Derivatives Only w ith C lamped V irtual Boundary Values D iverged Inaccurate

5 Internal Derivatives Only w ith Weighted V irtual Boundary Values Converged Accurate

Table 5.1 Case Study of Various Characteristic Boundary Condition Options

attempted in this research for comparison purposes. It was observed that only

using the spatial derivatives generates poor results for the classic airfoil problem.

Convergence was obtained quickly, but the results were smoothed across the domain

and the �ow �eld around the airfoil was completely inaccurate. When the full Euler

equations were used with both temporal and spatial derivatives, the problem was

solved successfully.

Transient problems utilize a uniform, or rather a global, time step size across

the entire domain. If a steady-state solution is sought, a local time step could be

used within each element such that the solution will march towards steady-state

convergence faster. For this steady-state solution, the largest time step size was

used for every element within the domain. The tailoring of the time step for each

element is based on the domain�s stability requirements, or rather, how fast the �uid

information can pass through a particular element. This time step is based on the

characteristic values within each element. The time step size for each element is

similar to (4.70) and takes the form for compressible Euler �ow analysis,

�te = CFL
Ae

(�Ic + �
J
c )

(5.45)

where Ae is the area of the element and �Ic and �
J
c are the maximum characteristic

wave speeds observed for each set of element faces. The I and J directions are

de�ned for structured mesh quadrilateral elements. The CFL constant is the same
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as that used in (4.70). The characteristic speeds are determined by

�Ic =
�����!V � bnI���+ a

�
�SI (5.46)

which is valid for the I facing edges of the element. The variable SI is the element

edge area of the I facing edges, a is the speed of sound,
�!
V is the velocity �eld vector,

and bnI is the normal vector facing outward from the I facing edges. The J direction
is treated in a similar fashion. If a time accurate solution is desired, the minimum

global time step size is determined.

�tG = min (�te) (5.47)

5.3.5 No Penetration Boundary Conditions and Their Respective Residual

Weights. The airfoil problem requires that the �uid not penetrate the airfoil

surface. Since the �ow is inviscid, only the normal velocity components must equal

zero at the surface boundary. The tangential and normal velocity components are

generated through the relationships

vfx � cos (�) + vfy � sin (�)� vfn = 0 (5.48)

vfx � sin (�)� vfy � cos (�)� vft = 0 (5.49)

The normal velocity component is then set equal to zero at the airfoil surface bound-

ary. Both the normal and tangential components are retained and post-processed

to ensure accuracy of the implemented boundary conditions. The velocity com-

ponent conversion relationships (5.48) and (5.49) are applied through the LSFEM

boundary integral portion of the functional. For the airfoil problem, this creates

a total of three systems of equations that were simultaneously solved. The �rst

system of equations was the Euler �uid analysis, the second was the no penetration

condition on the top of the airfoil, and the third was the no penetration condition
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Domain Type Final Residual Weights (Wi)
Euler Flow 100

Velocity Component Conversion (Top of Airfoil) 10�2:25

Velocity Component Conversion (Bottom of Airfoil) 10�2:25

Table 5.2 Final Residual Weights for Classic Airfoil Problem In a Uniform Flow
Field

on the bottom of the airfoil. The simultaneous solution required residual weight

balancing. As discussed in Section 3.2.6, applying an angled boundary condition

with higher-order elements requires that the boundary condition be applied using

the LSFEM boundary integral relationship. A discrete method, which would not

add systems of equations to the LSFEM solution by simply replacing vfx and v
f
y with

vfn and v
f
t , is inaccurate for higher-order elements.

Simultaneous solution of the three sets of equations was highly sensitive to

residual weighting factors. The iterative residual weight balancing method did not

work here, since each element had its own time step size where the residual calcula-

tions would be adjusted by that factor. Only a manual method of trial and error

properly worked to determine the residual weights for the simultaneous domains.

Those weights were �nally determined once the exact solution was observed for this

problem. Table 5.2 shows the �nal weights used. If the exact solution was not

known beforehand, the correct residual weights could not have been found.

5.3.6 Airfoil Problem Results. Once convergence was achieved and the

�nal residual weights determined, the airfoil results were compared to �nite volume

results and experimental results. Figure 5.12 and Figure 5.13 show the �nal pres-

sure results from the classic airfoil problem. The same number of degrees of freedom

were used along the airfoil surface as those used by �nite volume means. A total

of 80 degrees of freedom were used around the surface. For �nite di¤erencing, 80

cells were used along the surface. For LSFEM, the best solution was seen when 16

elements were used with a p-value of 5. Figure 5.12 shows the coe¢ cient of pressure
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results across the top and bottom surface of the airfoil, compared to experimental

results. It was shown here that the LSFEM results did not reach the peak Cp values

as those achieved through �nite volume or experimental means. The �nite volume

results over-approximated the true peak shown by the experimental results. Other

than at the leading edge of the top airfoil surface, the LSFEM results slightly under-

estimated both the �nite volume and experimental results. The �nite volume results

over-approximated its pressure response throughout as compared to the experimen-

tal results. Other p-values were attempted for this problem while maintaining the

same number of degrees of freedom (hp-re�nement) as the �nite volume and previ-

ous LSFEM airfoil problems (80 DOFs on surface of the airfoil). Surprisingly, an

increase in the polynomial order or a change in the mesh size did not improve the

accuracy as it compares to the �nite volume or experimental solutions. The solution

degenerated for a p-value less than 4. A re�nement of the �nite volume results was

not performed here. A mesh independent solution was not shown here for the �nite

volume approach. A highly re�ned grid was used for the �nite volume solution and

the main goal of this analysis was to compare the methods using the same number

of degrees of freedom.

It seems that both the �nite volume and LSFEM schemes had di¢ culty match-

ing the experimental results. The real di¤erences between these two schemes be-

comes more apparent when examining memory requirements and computational

time. The �nite volume scheme was much faster than LSFEM and required less

memory. It seems that �nite volume is the method of choice, and it is for a sin-

gle �uid domain problem, but the real question comes when considering a coupled

problem such as FSI. A single variational scheme could provide improved accuracy

overall for the coupled problem over that of a mixed approach such as a �nite volume

and Weak Galerkin scheme.
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5.4 Arbitrary Lagrangian-Eulerian Formulation

5.4.1 Euler ALE. In an ALE approach, the convective velocities become

relative velocities. The new convective velocities are based on both the actual

velocities vfx and v
f
y and the grid velocities v

f
xg and v

f
yg , i.e.,

e
vfx = vfx � vfxg (5.50)

e
vfy = vfy � vfyg (5.51)

The only other change required is to ensure that the energy associated with the

pressure work done by convective velocities is negated. This is accomplished by

adding pvfxg and pv
f
yg to the energy �ux vectors [23, 24, 44�46]. The compressible

Euler �ux vectors become

E =

8>>>>>>><>>>>>>>:

�f

�
vfx � vfxg

�
�fv

f
x

�
vfx � vfxg

�
+ p

�f

�
vfx � vfxg

�
vfy

(Et + p)
�
vfx � vfxg

�
+ pvfxg

9>>>>>>>=>>>>>>>;
(5.52)

F =

8>>>>>>><>>>>>>>:

�f

�
vfy � vfyg

�
�fv

f
x

�
vfy � vfyg

�
�fv

f
y

�
vfy � vfyg

�
+ p

(Et + p)
�
vfy � vfyg

�
+ pvfyg

9>>>>>>>=>>>>>>>;
(5.53)

The above conservative form was converted to the primal form using (5.24) and

(5.25). In the ALE case, vfxg and vfyg become part of the di¤erential equations.

To assist with the primal Euler ALE development, it was assumed that vfxg and

vfyg are not functions of q or Q, that is, they do not depend on the conservative or

primal responses. In other words, the grid velocities are assumed to be completely

independent of the �uid response. The �nal compressible and inviscid Euler ALE
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form was found to be:

Mass Continuity:

@�f
@t

+ �f
@vfx
@x

+
�
vfx � vfxg

� @�f
@x

+ �f
@vfy
@y

+
�
vfy � vfyg

� @�f
@y

= 0 (5.54)

Momentum Conservation (x-dir):

@vfx
@t

+
�
vfx � vfxg

� @vfx
@x

+
1

�f

@p

@x
+
�
vfy � vfyg

� @vfx
@y

= fx (5.55)

Momentum Conservation (y-dir):

@v

@t
+
�
vfx � vfxg

� @vfy
@x

+
�
vfy � vfyg

� @vfy
@y

+
1

�f

@p

@y
= fy (5.56)

Energy Conservation:

@p

@t
+ p


@vfx
@x

+
�
vfx � vfxg

� @p
@x
+ p


@vfy
@y

+
�
vfy � vfyg

� @p
@y
= 0 (5.57)

5.4.2 Navier Stokes ALE . The u-p-! form of the Navier Stokes equations

with convective velocities identi�ed takes the form

Mass Continuity:
@vfx
@x

+
@vfy
@y

= 0 (5.58)

Momentum Conservation (x-dir):

�f
@vfx
@t

+ �f
e
vfx
@vfx
@x

+ �f
e
vfy
@vfx
@y

+
@p

@x
+ �

@!

@y
= fx�f (5.59)

Momentum Conservation (y-dir):

�f
@vfy
@t

+ �f
e
vfx
@vfy
@x

+ �f
e
vfy
@vfy
@y

+
@p

@y
� �

@!

@x
= fy�f (5.60)
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Vorticity:
@vfy
@x

� @vfx
@y

= ! (5.61)

These convective velocities are only found in the momentum conservation equations.

The convective velocities are then modi�ed to represent mesh movement. The new

momentum conservation equations take the form [23,24,44�46]

Momentum Conservation (x-dir):

�f
@vfx
@t

+ �f

�
vfx � vfxg

� @vfx
@x

+ �f

�
vfy � vfyg

� @vfx
@y

+
@p

@x
+ �

@!

@y
= fx�f (5.62)

Momentum Conservation (y-dir):

�f
@vfy
@t

+ �f

�
vfx � vfxg

� @vfy
@x

+ �f

�
vfy � vfyg

� @vfy
@y

+
@p

@y
� �

@!

@x
= fy�f (5.63)

The u-p-� formulation will also result in a small di¤erence from the original form

where only the momentum conservation equations are modi�ed, i.e.,

Momentum Conservation (x-dir):

�f
@vfx
@t

+ �f

�
vfx � vfxg

� @vfx
@x

+ �f

�
vfy � vfyg

� @vfx
@y

+
@p

@x
�
 
@�fx
@x

+
@�fxy
@y

!
= fx�f

(5.64)

Momentum Conservation (y-dir):

�f
@vfy
@t

+ �f

�
vfx � vfxg

� @vfy
@x

+ �f

�
vfy � vfyg

� @vfy
@y

+
@p

@y
�
 
@�fxy
@x

+
@�fy
@y

!
= fy�f

5.4.3 Veri�cation of ALE. A test problem was created to verify the use

of the ALE approaches developed above. The problem uses a simple uniform and

square domain as an initial condition. As the solution develops, the center of the

mesh deforms through a user prescribed motion. The following equation was only
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Figure 5.14 ALE Veri�cation Problem: Mesh Deformation

applied to the two elements in the center of the mesh:

y (t) = 0:25

�
1� cos

�
2�t

4

��
(5.65)

The prescribed motion has a displacement magnitude of 0.25 and has a period of 4

seconds. The centerline nodes were moved such that the center of the mesh follows

the prescribed motion and the outer two strips of elements remain stationary near

the boundaries. A linear interpolation was used between the prescribed centerline

motion and the stationary elements. Figure 5.14 shows a sample deformation at the

maximum mesh deformation.

Uniform �ow conditions were applied to the �uid (vfx = 0:3100; v
f
y = 0:0000;

p = 0:7143; �f = 1:0000; and ! = 0:0000). If no mesh deformation was allowed,

the solution would remain at the uniform �ow conditions. The transient mesh

deformation provided a mesh and problem that tested the accuracy of Navier-Stokes

ALE and Euler ALE. If the conditions remain the same and do not deviate beyond

the initial uniform �ow conditions (excluding machine error), then the ALE approach

is veri�ed. This approach is commonly used to verify ALE approaches [23, 44�46].

If the uniform �ow conditions do not change as the mesh moves, the Geometric
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Conservation Law (GCL) is shown to hold properly for the given implementation.

GCL states that the time rate of change of the element volume equals the grid

velocity normal to the surface of each element face, i.e., [46].

@

@t

Z
V

dV =

Z
A

(�!v g � bn) dA (5.66)

As long as the Jacobian is updated at every time step and the time integration scheme

is accurate, GCL will hold when using �nite element methods [23]. This means that

the grid velocities must be calculated with a high level of accuracy between each

iteration.

The above problem was solved using the ALE approach for both Euler and

Navier-Stokes equations. In both cases, the uniform �ow conditions held through

the entire temporal history using a time step size of 0.01 seconds up to a total time

of 1:00 seconds. In these cases, the computed response variance was at the machine

error level (10�14). Figure 5.15 and Figure 5.16 show the density contour plot for

the Euler ALE and Navier Stokes ALE results, respectively. The same unchanging

results were observed for all response types. In other words, even though the mesh

was moving with respect to time, all types of �uid responses exhibited no change.

This was the desired response.

The ALE approach allows for the �uid domain to remain accurate while mesh

deformation is used. This is essential for transient FSI problems since the structure

will provide boundary deformation and will create a �uid mesh that is moving with

respect to time. In other words, it allows the implementation of a Lagrangian system

(structure) to interface with an Eulerian system (�uid) accurately.
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Figure 5.16 Contour Plot of Density for the Navier-Stokes ALE Veri�cation Prob-
lem
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VI. Fluid-Structure Interaction Theory and Methodology

6.1 Simultaneous Coupling of Multiple Fields

Using �nite elements for both types of domains creates a set of simultaneous

equations that can be solved for both �uids and structures concurrently. In the case

of �uid-structure coupled problems, each domain depends on the other domain�s

degrees of freedom. Structural deformations change as the aerodynamic pressures

change, and aerodynamic pressures change as the structure de�ects and changes the

boundary�s shape. Not only does the boundary move, but mesh coordinates in the

interior of the �uid domain will also change. In the transient scenario, the velocities

at the boundary between the structural domain and the �uid domain must also

match. In the inviscid case, the normal velocities must match at the boundary.

A concurrent set of equations is possible to solve the coupled problem with

shared degrees of freedom, i.e.,24 [KS] [KSF ]

[KSF ] [KF ]

358<: US

UF

9=; =

8<: FS

FF

9=; (6.1)

where subscript S represents structural components and subscript F represents �uid

components of the problem. The variables US and UF are de�ned in Appendix B

for each type of �uid and structural analysis used in this dissertation. Both linear

and nonlinear �uid equations were used for various �uid and structural domains.

Unique bene�ts were observed when using the fully-coupled equation above. The

most notable bene�t was that the common implementation of the �uid and structural

domains and their coupled components facilitated a simultaneous solution.

Another possible domain governs the mesh deformation. This domain could

be characterized by an elasticity-based mesh deformation scheme where the mesh

deformation has its own analysis type and will determine mesh movement. This
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domain can also be implemented into a fully simultaneously coupled system26664
[KS] [KSF ] [KSD]

[KSF ] [KF ] [KFD]

[KSD] [KFD] [KD]

37775
8>>><>>>:

US

UF

UD

9>>>=>>>; =

8>>><>>>:
FS

FF

FD

9>>>=>>>; (6.2)

where the subscript D represents the mesh deformation domain. This domain uti-

lized two-dimensional plane-stress equations. Least-squares �nite elements were used

for all three domains for consistency.

In a two-�eld formulation (6.1), the coupled matrices, KSF and KFS, contain

the coupled information between the structure and �uid domain. Since LSFEM

is always symmetric, the KSF and KT
FS matrices are always equal and the global

coupled sti¤ness matrix will remain symmetric. These coupled matrices are built

by sharing degrees of freedom between the �uid and structural domain. For the

steady-state case, the only sharable degrees of freedom are the structural load and

the �uid pressure. In the transient scenario, structural velocities will be shared with

�uid velocities. These degrees of freedom are equated and then directly assembled

together into a global coupled matrix that is then solved simultaneously instead of

sequentially. Unfortunately, the coupled matrices cannot contain the displacement

information from the mesh deformation domain to the �uid domain for the steady-

state case. In a transient scenario, displacements of the mesh deformation domain

can be converted into grid velocities for the �uid domain.

After each iteration, the matrix KF is updated whether the �uid is linear or

nonlinear due to the movement of the �uid-structure interface. The �uid boundary

must move and, generally, the �uid elements change shape and their respective Ja-

cobians require an update. The matrix KS also requires updating for a nonlinear

structural problem.

The three-�eld formulation adds the elasticity-based mesh movement scheme

to the global coupled matrix. The global sti¤ness matrix is still symmetric. The
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matrixKSF still contains pressure information from the �uid domain to the structural

domain. With the third �eld, the matrix KSD relates the structural displacements

to the mesh deformation displacements. The matrix KFD contains only zeroes since

mesh deformation velocities cannot transfer directly to �uid velocities. Fluid grid

velocities cannot be shared degrees of freedom even when using an ALE approach,

because grid velocities are not solved directly using LSFEM. Grid velocities are only

solved between solution iterations. If the �uid domain uses nonlinear �uid equations,

a �uid sti¤ness matrix update is performed anyway.

6.2 Simultaneous vs. Sequential Coupling

The two-�eld and three-�eld simultaneous methods show how the K and F

matrices are formed to generate a simultaneous solution. Appendix B and (3.21)

and (3.22) show how the K and F matrices are formed using the speci�c di¤eren-

tial operators for each analysis type. A sequential solution can be generated using

the same types of analysis for each domain and cross-domain relationships as the

simultaneous solution of (6.1) and (6.2). The core di¤erence between the schemes

is how the relationships are applied and in what order. The simultaneous scheme,

as shown in Figure 6.1, depicts a single dynamic system where the boundary veloci-

ties match, the boundary stress and pressure equilibrium match, and the boundary

deformations match. These relationships and the �uid, structure, and elasticity-

based mesh deformation domain are all solved simultaneously. After that, the �uid

mesh is updated and then its mesh velocities are updated. These mesh updates are

performed between each iteration instead of during the simultaneous solution. The

sequential solution �ows di¤erently (Figure 6.2). The sequential solution begins by

solving the �uid �rst. After that, the �uid stresses and pressures are transferred

to the structural domain. Next, the structure equations are then solved and then

the boundary displacements are transferred to the mesh deformation domain. The

mesh deformation domain is solved next. After that, the �uid mesh is updated and
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Γ
= SF vv rr

Fluid (F)

Structure (S)

Mesh Deformation (D)

Γ
⋅=⋅ SSFF nn σσ

Γ
= DS dd
rr

Ω
= DF dx
rr

Ω
= DF

g vv rr

Figure 6.1 Simultaneous Fluid-Structure Interaction Process

the boundary velocities are updated and are then applied as boundary conditions to

the �uid domain.

The sequential method follows the traditional scheme. The boundary relation-

ships are transferred to the other domain by an "over-the-fence" methodology. Each

domain is solved individually and is not part of a single dynamic system. Bendik-

sen has noted that the sequential scheme may result in poor convergence properties

and may require more degrees of freedom than is necessary [19]. The simultaneous

scheme is treated as a single dynamic system where the boundary relationships are

directly shared without a virtual boundary. Bendiksen noted that simultaneous

schemes exhibit better convergence properties and may not require as many degrees

of freedom for both the �uid and structure to obtain the same level of accuracy. In

addition, LSFEM �ts well within the simultaneous scheme since its mixed �rst order
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Figure 6.2 Sequential Fluid-Structure Interaction Process
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form allows both primary and secondary variables to be shared directly. This allows

for a single "black-box" to be used to help create a single dynamic system.

6.3 Mesh Movement Schemes

Several options exist in using mesh movement schemes used within an FSI

problem. The main options examined here are user-speci�ed mesh movement scheme

and an elasticity-based mesh movement scheme. The user speci�ed approach will

usually include a simple scheme that involves vertical or horizontal scaling to move

the mesh. A vertical scaling scheme was examined here for a two-�eld coupled FSI

problem. The scheme used

�
xn+1i

	
= fxni g+ dsi fTscaleg (6.3)

where Tscale is a vector that represents the proportional horizontal or vertical node

placement (fxng) of the original mesh for the ith row or column of nodes respectively,

dsi is the boundary deformation connect to the i
th row or column, and n represents

the iteration number. A user-speci�ed scheme allows the user to generate all mesh

movement position and velocities between iterations instead of using a fully simulta-

neous analysis which would include a mesh deformation analysis domain. The mesh

deformation domain would increase computation time and memory requirements if

used. The two-�eld coupled approach can exhibit computational e¢ ciency (within

each iteration) as long as the user-speci�ed mesh deformation scheme is possible.

An elasticity-based scheme uses a structural-type analysis to determine mesh

movement. For a two-dimensional �uid domain used within a coupled FSI scheme,

it is overlaid with a two-dimensional in-plane elasticity domain. The �uid mesh

is updated through the elasticity-based scheme and completed after each iteration.

This creates a three-�eld simultaneously coupled scheme.
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The modulus of elasticity constant for the mesh deformation domain was typ-

ically picked to be 109 times less than any connecting structural domain. This was

done such that the mesh deformation domain, even it is elasticity based, does not

a¤ect the structure�s response by adding sti¤ness to the structure.

6.3.1 Mesh Deformation Prediction. If a FSI problem is to be solved at

time step n+1, the Eulerian �uid mesh must have nodes whose coordinates are also

de�ned at time step n+ 1 (noted as:
�!
d n+1). After the nth time step is completed,

the boundary deformations at the nth time step generate
�!
d n. If the solution is

desired at time step n+ 1, the
�!
d n+1 is unknown and can be extrapolated via

�!
d n+1 = 2

�!
d n ��!d n�1 (6.4)

so the appropriate �uid mesh is used [29]. A linear extrapolation is shown above.

This extrapolation may be used as an initial guess for the n+1 time step. Once the

initial guess is used and a full solution is completed at time step n+1, the new
�!
d n+1

should be used to determine the location of the �uid mesh for the next time step.

Once the �rst nonlinear sub-iteration is completed for the next time step, the mesh

is updated using a user-speci�ed or an elasticity-based mesh movement scheme.

6.4 Nonconformal Mesh Interaction

6.4.1 Nonconformal Mesh Interaction Theory. An important ability of the

least-squares formulation is the in�uence of the boundary integral portion of the least

squares residual. This directly applies to the �uid-structure interface boundary. If

a nonconformal mesh exists between the �uid and structure meshes, the boundary

integral can specify how the shared degrees of freedom are related without forcing

conformal node locations at the boundary.

Least-squares can be used similar to the mortar element scheme [40,41]. Con-

sider a nonconformal mesh boundary where a general response u (x) is desired to

6-7



be equal along x between two domains A and B (Figure 6.3). The least-squares

boundary integral becomes

R� =

Z
�

juA (x)� uB (x)j20 d� (6.5)

where the residual goes towards zero as the general response u is equal along the

interaction boundary.

The residual may be integrated piecewise using the smallest sections observed

between the nodes on the interface between the two domains. Considering a sample

scenario (Figure 6.3), the residual integral becomes

R� =

Z
�

(�) d� =
x2Z

x1

(�) d� +
x6Z

x2

(�) d� +
x3Z

x6

(�) d� +
x4Z

x3

(�) d� (6.6)

The responses uA and uB are de�ned by di¤ering shape functions and each discretiza-

tion is de�ned di¤erently

uA (x) = NAdA (6.7)

uB (x) = NBdB (6.8)

The residual now becomes

R� =

Z
(NAdA �NBdB)

T (NAdA �NBdB) dx (6.9)

as de�ned by the discretization in (6.7) and (6.8).

6.4.2 Examination of Nonconformal Mesh Interaction. The nonconfor-

mal mesh methodology was implemented for two problems with known analytical

solutions. A Poisson equation was solved using an inner domain and boundary

interfaces. The same p-value was used between the two portions of the problem,

but di¤erent element sizes were used at the boundary (Figure 6.4). The p-value was
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Figure 6.4 Example Nonconformal Mesh For Poisson�s Inner DomainWith Bound-
ary

increased to study the hp-convergence of the nonconformal mesh methodology. An

hp-convergence study includes increasing the p-value (increase order of polynomials),

increasing h-value (coarsen mesh), but the number of degrees of freedom remained

the same. Figure 6.5 shows that the nonconformal accuracy is better than the con-

formal mesh at low p-values and has similar convergence rates as the conformal mesh

convergence rates. This indicates success of the proposed methodology.

The manufactured elasticity problem proposed in Section 4.5.2.2 (Figure 4.8

and Figure 4.9) was considered here with the nonconformal mesh interaction method-

ology. The standard square domain was split into two halves. Two domains were
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Figure 6.5 Convergence of Solution On Interface With Nonconformal Mesh Using
Same p-value for Inner Domain and Boundary Integral (Case A)

Domain
A

Domain
B

Domain
A

Domain
B

Figure 6.6 Example of Meshes Used to Split Domain in Two Pieces For Noncon-
formal Mesh Study

used with di¤erent mesh sizes and/or di¤erent p-values. A sample mesh con�gura-

tion is shown in Figure 6.6.

The �rst case (Case A) used a nonconformal mesh using the same p-value

between both domains but domain B contained two times as many degrees of freedom

as domain A. The p-value was varied similarly for both domains (2 � p � 10).

An hp-re�nement curve was generated for this case using the L2 response error

norm (Figure 6.7). This case exhibited standard hp-re�nement rates/slopes for this

problem (m = 1). Even though di¤erent meshes are used on each side of the domain
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Figure 6.7 hp-Re�nement Curve for Case A

and the centerline of the domain does not contain a conformal mesh condition, the

accuracy still improves at the proper rate and achieves a consistent level of accuracy.

The second case (Case B) used a nonconformal mesh where only one domain

varied its p-value and mesh size. The h and p-values varied for domain A (2 � p �

10) to maintain its number of degrees of freedom (and remain consistent with hp-

re�nement curve generation) while the domain B p-value was held constant (p = 5).

The number of total domain degrees of freedom did not change as the p-value for

domain A varied. This case showed that the lower-order domain will dominate

the error exhibited throughout the domain. The hp-re�nement curves maintained

the proper rate of improvement with the p-value until the p-value of 5 was reached.

After that point, domain B dominated the error of the problem and curves plateaued

from that point on.

The problems seemed to exhibit consistent accuracy when using the proposed

nonconformal mesh methodology. The lowest-order accuracy of the two domains

dominates the overall solution accuracy and maintains its accuracy order. In other

words, the nonconformal mesh interaction does not introduce additional error to the

system.
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Figure 6.8 hp-Re�nement Curve for Case B

To truly examine if the error was consistent, each domain half was solved

independently with strongly applied boundary conditions at the mid-line interaction

boundary. The boundary conditions were applied using the known analytic solution

at the mid-line location. Solving the problem this way provides residual error values

without regard to unique nonconformal methods. This analysis is independent of

any special method which may or may not introduce error into the system. Figure

6.9 shows the comparison for both domains between the nonconformal residual error

values and the independent residual error values for Case A. Figure 6.10 shows

the same comparison for Case B. Both cases show that the nonconformal solution

exhibited better accuracy throughout. This was unexpected but shows that the

nonconformal methodology is just as good or better than the independent solution.
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Figure 6.9 hp-Re�nement Curve for Case A Examining Consistent Error Rates
Between Nonconformal and Independent Solutions

Figure 6.10 hp-Re�nement Curve for Case B Examining Consistent Error Rates
Between Nonconformal and Independent Solutions
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VII. Steady-State Fluid-Structure Interaction

Several problems were considered to demonstrate and verify the simultaneous LS-

FEM FSI approach for steady-state problems. The �rst problem considered was a

simple driven cavity �ow problem with a �exible right wall. This problem demon-

strates the implementation of the simultaneous LSFEM FSI. The problem was

completed using the two-�eld and three-�eld simultaneously coupled approaches.

The second problem included a Double Channel Flow Problem with a known exact

solution at the interface boundary [74]. The �uid domain consisted of a simple

Poiseuille driven channel �uid �ow. In addition, the exact solution is only known at

the boundary and not within every domain across the FSI problem. It was found

that residual weighting is critical when considering multiple domain problems. The

Method of Manufactured Solutions (MMS) [64] was used to create an FSI problem

with a known solution everywhere within the system. This allowed the response er-

ror related to the exact solution to be generated everywhere within the FSI problem.

Re�nement curves and their rates were created and compared to theory.

7.1 Two-Field Simultaneously Coupled Problem �Driven Cavity Flow with Flexible

Wall

The two-�eld coupled LSFEM FSI formulation was implemented using a driven

cavity Stokes �ow problem with a �exible right wall which was represented as a

simple linear Euler-Bernoulli beam. The �uid pressure and beam distributed load

were treated as equivalent degrees of freedom and were assembled using a conformal

mesh. The problem was de�ned such that all cross-domain degrees of freedom were

conveniently collocated. Figure 7.1 shows how the domains were connected together.

The nonlinear problem was iterated until steady-state convergence was reached.

Since the two-�eld coupled LSFEM equations were used for this problem, simple

proportional scaling (6.3) was used to move the nodes horizontally. Figures 7.2 and
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Figure 7.1 Assembly of Driven Cavity Flow with Flexible Right Wall with Two-
Fields

7.3 show the pressure and velocity results, respectively. The �nal deformed mesh is

shown over the contour results.

A side wall was selected to be �exible because of the high pressure gradient

observed to exist on that wall. Figure 7.2 shows how the high pressure values were

observed on the right wall, which resulted in a signi�cant beam displacement.

7.2 Three-Field Simultaneously Coupled Problem �Driven Cavity Flow with Flex-

ible Wall

The previous section showed successful implementation of the simultaneous

LSFEM formulation. Unfortunately, the mesh deformation scheme is too simple

and can only work for simple geometry. A more robust mesh deformation scheme

is required for more complex shapes. An elasticity-based mesh deformation scheme

was used to develop the three-�eld formulation. The same driven cavity �ow with

a �exible wall problem was used again except a mesh deformation �eld was incor-

porated using a plane-stress least-squares approximation. In addition, the bending

displacements (w) were shared with the mesh deformation displacements (dx) at the

interaction wall. Figure 7.4 shows how the problem was assembled together with

three domains.

7-2



x

y

Figure 7.2 Pressure Contours Using Two-Field Scheme

x

y
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Figure 7.4 Assembly of Driven Cavity Flow with Flexible Right Wall Using Three
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Figure 7.5 Comparison of Di¤erent Mesh Movement Schemes for Driven Cavity
Flow with Flexible Right Wall Problem

Figure 7.5 shows a �nal mesh comparison between the elasticity based (three-

�eld) and proportional horizontal mesh deformation (two-�eld) schemes. In the

proportional horizontal mesh scheme, elements near the deformed boundary show

higher skewing than the elements contained in the elasticity based scheme. This

is because the nodes only translate horizontally while the elasticity based scheme

distributes the nodes better because they can move in all directions. In addition,

the elasticity-based scheme allows for a fully simultaneous three-�eld approach.

Figures 7.6 and 7.7 show the pressure and velocity results of the driven cavity

�ow with a �exible wall problem. The �nal results closely match the results from

the two-�eld scheme. No observable di¤erences were seen between the responses of

the two-�eld and three-�eld schemes.

The results matched, but the processing time did not. The three-�eld scheme

showed a 26% increase in processing time due to the addition of the mesh defor-

mation �eld. However, the three-�eld scheme converged with 20% fewer iterations.

In addition, the scheme allows the implementation of more complex geometry and

boundary deformations.
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Figure 7.7 Velocity Magnitude Contours for Driven Cavity Flow with Flexible
Right Wall Problem Using Three-Field Scheme
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7.3 Double Channel Flow Problem with Flexible Beam

A simple problem was considered to demonstrate and verify accurate coupling

of a �uid-structure interaction problem. Wang presented a double channel �ow

problem with a �exible beam separating the channels [74]. The problem presented

by Wang has an analytical solution which provides a means to verify the proposed

coupling methodology.

The problem considered for veri�cation consisted of two channels of uniform

initial height, Hi (x). The top channel (i = 1) had an initial height of 0.02 meters

and the bottom channel (i = 2) had an initial height of 0.04 meters. Both channel

lengths were 0.75 meters. Both channels have the same maximum and average

velocity pro�les throughout, but since the channels have di¤erent heights, the �ow

rates must be di¤erent (Q1 = 177 � 10�6; Q2 = 354 � 10�6m2

s
). The channels were

separated by a thin beam with a uniform cross-section height of � =0.01 meters

and a modulus of elasticity of E = 200GPa. The beam had the same length as

the channel lengths. The channels were considered to converge at their right ends,

so the pressure values were constrained to be equal at the right end of each �uid

domain. The di¤ering �ow rates on the top and bottom channels produce a pressure

di¤erence that acts across the beam length. The beam displacement w(x) generates

new non-uniform heights for each channel. The new channel height relationships

are de�ned through

hi (x) = Hi (x)� w (x) (7.1)

Similar to Wang, the channel �uid �ow was analyzed using incompressible

Navier-Stokes �uid equations [74]. The top and bottom of each channel were con-

sidered as no-slip walls where the velocity is zero. Each channel can be considered

a Poiseuille channel �ow problem. Therefore, dp
dy
is constant for a given x coor-

dinate. [67] Considering this, the in�ow and out�ow pro�les are known for each

channel, since the mass �ow rates in and out of each channel are constant.
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Figure 7.8 Double Channel Flow Problem

Shear stresses exist on each wall due to the no-slip wall condition. The viscosity

value was assumed to be � =0.001 kg
m�s and the density was assumed to be � =1000

kg
m3 .

Since the beam has pressure loads and in-plane shear loads acting on each side, the

nonlinear beam with axial and bending displacements and loads was considered.

The beam boundary conditions consisted of a clamped condition on the left end and

a free condition on the right end (Figure 7.8).

The analytical results provided by Wang were compared to the results obtained

using the simultaneously coupled LSFEM scheme. The loads were summed and

equilibrium was enforced between the upper channel pressure, the lower channel

pressure, and the beam�s distributed load. The distributed load acting on the beam

is not directly obtainable as a degree of freedom. The load was obtained by using

the steady-state form of (4.7). A boundary interaction LSFEM term was included

in the simultaneous problem,

R� = p2 � p1 �
@V

@x
(7.2)

The bending deformation in�uence on the �uid domains was considered through

mesh deformation. The meshes were updated through the elasticity-based scheme

after each solution iteration. A mesh deformation scheme was used and resulted in

a three-�eld, simultaneously coupled scheme.

Both �uid meshes were discretized using 25 length-wise elements and four

height-wise elements. The mesh deformation meshes were discretized in the same
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Figure 7.9 Pressure Di¤erence, Uniform Cross-Section (Laminar) for Double
Channel Flow Problem

way, since they were overlaid directly on the �uid domains. The beam and pressure

relationship meshes were one-dimensional and had 25 lengthwise elements. A p-value

of 4 was used throughout the problem.

The net pressure results acting on the beam are shown in Figure 7.9. Both

the FEM results and the analytical results provided by Wang are shown in the

�gure. The bending displacement results are shown in Figure 7.10. Both plots

show an excellent match to Wang�s analytical solution and verify the LSFEM three-

�eld, simultaneously coupled scheme for this simple problem. The results generated

here were created using a user-de�ned set of residual weights for each �eld (Table

7.1). The user-de�ned set was generated through trial and error until the exact

solution was observed. It was discovered that the structural domain required a low

weighting to make the solution balanced. If the structural domain had a high weight

or a weight equal to other �eld-types, then the structural domain would begin to

dominate the solution at the expense of accuracy in the �uid domain. On the other

hand, the �uid domain was far less sensitive to residual weights. It was observed

here that proper residual weights were related to problem type. However, the same

balanced weights determined here were used for a re�ned double channel problem

with a re�ned mesh and higher p-value, and the same results were achieved. This

implies that the balanced weights are not necessarily dependent on h- or p-values.
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Channel Flow Problem

Domain Type Final Residual Weights (Wi)
Fluid (�F ) 105

Structure (�S) 10�2

Mesh Deformation (�D) 10�7

Stress Equilibrium (�FS) 100

Table 7.1 Final Weights for Wang�s Double Channel Flow Problem

7.4 Residual Weighting Case Study

Wang�s double channel �ow problem was used to examine various residual

weighting methods. It is desirable to �nd a "hands-o¤" residual weight balancing

method that is applicable for problems without a known solution. Fourteen di¤erent

cases were considered using various combinations of residual error balancing methods.

All cases were compared to the exact solution of Wang�s FSI problem. The maximum

percent error was determined for the beam�s maximum bending displacement and

the maximum net pressure generated on the beam by the �uid domain. Table 7.2

shows the results of the case study.

The �rst case, the pure sequential solution, did not require any residual weights.

Each �uid, structure, and mesh deformation domain has already been shown to have

good residual weights at its equation level for a steady-state analysis. This was

shown for individual �uid and structural problems used for original veri�cation. The

results for this double channel �ow problem were very close to the exact solution
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Case Method % Displacement Error % �p Error Usable?
1 Pure Sequential Solution 0.003% 0.001% Yes
2 No Scaling 96.773% 93.043% No
3 Manual (User Prescribed) 0.006% 0.004% Yes
4 Nondimensional Units 99.997% 0.002% Half
5 Energy Units 99.971% 0.034% Half
6 Field Averaging 0.004% 0.001% Yes
7 Field Move Limits 99.998% 0.251% No
8 Element/Equation Averaging 81.684% 29.899% No
9 Equation Averaging 79.014% 29.876% No
10 Element Averaging 27.360% 29.775% No
11 Equation Pairing Averaging 0.005% 0.002% Yes
12 Normalize A Using Max Norm 99.998% 91.145% No
13 Normalize A Using Min Norm 99.998% 87.665% No
14 Normalize A Using L2 Norm 93.225% 29.451% No

Table 7.2 Results for Residual Weighting Case Study

for both the �uid and structure. No residual weights were considered at all since

each was solved on its own and require no balancing. For the FSI problems solved

here, sequential methods typically worked well for steady-state problems and simple

transient FSI problems. Alternatively, Bendiksen has shown that for highly complex

and nonlinear transient FSI problems, simultaneous solutions were better [19].

The second case included a simultaneous solution without any residual weight-

ing factors. Poor results were observed for all domains and the need for residual

weight balancing for multiple simultaneously solved domains was justi�ed. The

manual method, the third case, showed success (as shown above). Unfortunately,

the manual method is only applicable for problems with a known solution, since the

user can manually adjust the residual weights until the solution matches the known

result. This is nearly impossible for a problem with an unknown solution.

Cases four and �ve included modifying the di¤erential equations such that they

have the same type of units. Case 4 modi�ed the equations into nondimensional

form and case 5 modi�ed the equations such that each equation was in energy units.

The equations were modi�ed using user-speci�ed characteristic units. Modifying the
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characteristic units of the di¤erential equations to either energy units or nondimen-

sional units proved to only work for the �uid domain. The �uid domain is considered

"easy" for this problem and the �uid equations were observed to be fairly insensitive

to residual weight modi�cation (at the equation level). The poor residual error of

the structural domain was not �xed through either unit modi�cation method.

The sixth case was the �eld averaging method by implementing (3.98) and

(3.99). It was a strong method that was completely "hands-o¤" and accurate using

a simultaneous solution. If residual error balancing is considered to be similar to

an optimization problem, then the �eld averaging method would contain the fewest

design variables (residual weights). The equation averaging (3.101), the element av-

eraging (3.102), and the element/equation averaging (3.103) methods proved to have

too many residual weights and the simultaneous problem becomes very challenging

to balance. The residual error balancing behaved in a highly coupled and highly

nonlinear fashion. Considering too many "design variables" makes this problem too

di¢ cult to properly balance the residual weights such that the correct solution is

found.

The equation pairing method grouped similar types of equations together.

This is similar to design variable linking in optimization problems [75]. For example,

the structural domain has �ve equations. Two of those equations are force equi-

librium and the other three are displacement-stress relationships. For case eleven,

the two equilibrium equations had the same weighting and the three displacement-

stress relationships had the same weighting. This showed a signi�cant reduction in

unknown residual weighting factors. The equation pairing method seemed to work

since there were fewer unknown weights to balance.

Cases 12 through 14 were used to examine the e¤ects of adjusting each row

of the matrix di¤erential operator A such that its norm would be improved and

the condition number of the A matrix would improve. Three di¤erent norms were
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attempted. The L2 norm

Ainew =
Ai
jAij0

(7.3)

the max norm

Ainew =
Ai

jAijmax
(7.4)

and the min norm

Ainew =
Ai

jAijmin
(7.5)

were applied to each operator A. The right hand side was similarly modi�ed by the

respective matrix norm

finew =
fi
jAij0

(7.6)

This method proved to not improve the solution for any case. It showed that

the matrix condition number does not improve or help balance the least-squares

functional such that a reasonable solution can be achieved.

7.5 Fluid-Structure Interaction Problem Created by Method of Manufactured Solu-

tions (MMS)

The double channel �ow problem was a good test using fairly simple types of

analysis. It is desirable to obtain not only a comparison to an exact solution at a

boundary, but to obtain domain-wide error and to obtain error convergence rates for

non-trivial problems. Tremblay et al. presented a method for creating benchmark

problems to verify FSI code [64]. Not only can it verify the FSI code altogether,

but it can verify each component of the FSI problem.

MMS involves nine generalized steps to produce a benchmark FSI problem.

The �rst step is to consider an FSI problem with a �uid domain and structural

domain with some user de�ned �nal displaced boundary f(x). The problem may

look like what is shown in Figure 7.11. Creating some nonzero f(x) is essential to

make the problem non-trivial. The next step is to �nd a divergence-free velocity
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�eld consistent with f(x). The rules that govern this step are detailed by Tremblay

et al. [64]. After that, a structural displacement �eld is de�ned by the user where

dy = f(x) and dx = 0 at the bottom of the structural domain. Once the displacement

�elds are known, the stress responses can be produced using Equations (4.20), (4.21),

and (4.22). After that, the � and p �uid expressions are generated through the stress

equilibrium equations. The Neumann-type equilibrium equations can be based on

�uid velocities and structural stresses, which are already determined values, i.e.,

�
2�
@u

@x
� p

�
nx + �

�
@u

@y
+
@v

@x

�
ny = �sxnx + �sxyny (7.7)

�

�
@u

@y
+
@v

@x

�
nx +

�
2�
@v

@y
� p

�
ny = �sxynx + �syny (7.8)

These can also be written in terms of the �uid stresses directly, e.g.,

�pnx + �fxnx + �fxyny � �sxnx � �sxyny = 0 (7.9)

�pny + �fyny + �fxynx � �sxynx � �syny = 0 (7.10)

This pair of equations will be solved simultaneously for the two unknowns � (x) and

p (x). These expressions are assumed to be only functions of x throughout the �uid

domain. With � (x) known, the �uid stresses can be determined. Once all the �uid

and structural responses are determined, the structural body forces and �uid body

forces can be determined. This will generate complicated body forces, but it will

balance the di¤erential equations properly.

A boundary displacement �eld of

f(x) = 1 + 0:03 (1� cos (2�x)) (7.11)
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Figure 7.11 Fluid and Structure Domain with Prescribed Final Boundary Dis-
placement

was assumed in this study. The MMS steps described above were followed using

Cartesian coordinates. The exact results for the �uid responses are shown in Figure

7.12 and the structural responses are shown in Figure 7.13.

With a known exact solution for an FSI case, the errors can be determined

across all domains. A total of four domains were used for this problem. Incom-

pressible Navier-Stokes formulation with stress responses (v-p-�) was used for the

�uid domain, a non-elliptic two-dimensional elasticity formulation was used for the

structural domain, an elasticity-based mesh deformation was utilized to move the

mesh, and the stress vector equilibrium was applied to the boundary interface. The

�uid domain consisted of no-slip walls on the top and bottom, and the velocities and

pressure were de�ned as speci�ed by the exact solution on the left and right walls.

The structural domain consisted of the displacements as prescribed by the exact

solution on the top, left, and right walls. The bottom interface wall was allowed to

remain �exible. The boundary interface shares the �uid stresses and pressure with

the structural stresses. The problem was solved using a simultaneously coupled

LSFEM scheme with varying p and h-values to verify the FSI code and to deter-

mine convergence rates. Additionally, an iterative residual weight balancing scheme

was used at the �eld level. The scheme proved to be successful where the optimal
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Figure 7.12 Thumbnail Plots of Exact Fluid Results for MMS Problem
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Figure 7.13 Thumbnail Plots of Exact Structural Results for MMS Problem
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Domain Type Final Residual Weights (Wi)
Fluid (
F ) 4:244 � 10�7
Structure (
S) 0:998
Mesh Deformation (
D) 4:405 � 10�11
Stress Equilibrium (�FS) 1:621 � 10�3

Table 7.3 Final Weights for MMS Problem

weights are shown in Table 7.3. The same balanced weights determined here were

used for a re�ned double channel problem with a re�ned mesh and higher p-value,

and the same results were achieved. This implies that the balanced weights are not

necessarily dependent on h- or p-values.

It was shown with the double channel problem that the sequential solution did

not require residual weight balancing. A study was performed here to examine if

this holds true here for the MMS problem. The sequential solution for the MMS

problem still includes a simultaneous portion. The structure must be solved with

the stress boundary equilibrium relationship, because it includes only two equations

for three structural unknowns. In other words, the sequential solution of the MMS

problem is not a pure sequential scheme. The small simultaneous portion can

have its own residual weights. Three cases were considered. The �rst case is the

simultaneous solution, the second is the sequential with residual weight balancing

used for its small simultaneous portion, and the third case is a sequential solution

with no residual weight balancing. The L2 response error norms for each response

type are shown in Table 7.4 for a MMS domain with 100 elements a p-value of 4.

Table 7.5 shows the same error norms but for a domain with much fewer elements

and a much higher p-value (25 elements and p-value of 8). The error norms were

integrated across each respective domain and compared directly to the known exact

solution.

Both Table 7.4 and Table 7.5 show accurate results for all three cases for both

meshes. All error norms were very similar among the three cases for a given mesh.

This implies that the weights for the small simultaneous portion of the sequential
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Response Type Simultaneous Sequential (WithWi Balancing) Sequential (NoWi Balancing)

Fluid (
F ) 
F Error 
F Error 
F Error

vfx 1.10163e-006 1.17288e-006 1.15902e-006

vfy 1.11475e-006 1.16918e-006 1.15044e-006

p 4.52583e-005 4.56235e-005 4.51687e-005

�fx 3.47342e-005 3.49112e-005 3.47481e-005

�fy 3.35338e-005 3.37074e-005 3.36111e-005

�fxy 2.33850e-005 2.35318e-005 2.32276e-005

Structure (
S ) 
S Error 
S Error 
S Error

usx 2.03816e-007 2.11050e-007 1.79030e-007

usy 1.62487e-006 1.63018e-006 1.61079e-006

�sx 2.77653e-005 2.79779e-005 1.53533e-005

�sy 1.37449e-004 1.38980e-004 7.96606e-005

�sxy 2.68994e-005 2.72075e-005 1.60016e-005

Stress Equilibrium (�FS ) �FS Error �FS Error �FS Error

p 2.06189e-004 2.08182e-004 2.05781e-004

�fx 1.62437e-004 1.63301e-004 1.58109e-004

�fy 1.98109e-004 1.99679e-004 1.97716e-004

�fxy 1.36062e-004 1.36839e-004 1.30997e-004

�sx 2.09876e-004 2.10487e-004 1.26573e-004

�sy 3.40429e-004 3.43054e-004 3.23441e-004

�sxy 1.30448e-004 1.31469e-004 1.04479e-004

Table 7.4 Error Comparisons for Sequential Vs. Simultaneous Solutions for MMS
Problem (100 Elements with p-value of 4)
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Response Type Simultaneous Sequential (WithWi Balancing) Sequential (NoWi Balancing)

Fluid (
F ) 
F Error 
F Error 
F Error

vfx 1.33852e-007 5.88315e-008 3.86703e-008

vfy 1.05694e-007 4.98314e-008 3.24532e-008

p 9.76650e-007 3.91216e-007 2.89434e-007

�fx 3.69702e-007 3.23781e-007 2.63803e-007

�fy 3.99870e-007 3.41250e-007 3.08079e-007

�fxy 3.68122e-007 2.92652e-007 2.19656e-007

Structure (
S ) 
S Error 
S Error 
S Error

usx 6.75704e-009 3.61934e-009 1.48192e-009

usy 8.42724e-008 1.84999e-008 1.19533e-008

�sx 2.78081e-007 8.26302e-007 2.47712e-007

�sy 5.20752e-007 1.74091e-006 5.95197e-007

�sxy 3.35606e-007 5.86459e-007 1.75334e-007

Stress Equilibrium (�FS ) �FS Error �FS Error �FS Error

p 4.20378e-006 1.83042e-006 1.27052e-006

�fx 2.32566e-006 2.69655e-006 1.88110e-006

�fy 2.46142e-006 2.23274e-006 1.84261e-006

�fxy 2.47811e-006 2.51870e-006 1.78596e-006

�sx 3.20806e-006 7.90030e-006 2.58359e-006

�sy 2.14329e-006 2.68926e-006 2.31604e-006

�sxy 2.14967e-006 2.77007e-006 1.78353e-006

Table 7.5 Error Comparisons for Sequential Vs. Simultaneous Solutions for MMS
Problem (25 Elements with p-value of 8)
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solution are adequate at their default values (1.0). Residual weight balancing was

not necessary to balance the structural domain equations with the stress equilibrium

relationship. For this problem it was shown that the sequential solution without

residual weight balancing performed just as well as the sequential solution with bal-

ancing and the simultaneous solution. Since a sequential solution without balancing

exhibits fewer total iterations (20-50% reduction) and lower processing time per iter-

ation (2X reduction), it seems to be bene�cial to utilize a sequential solution without

balancing for this problem. This was shown for both the double channel �ow prob-

lem and the MMS problem. This could imply that steady-state FSI problems can be

sequentially solved as accurately and more e¢ ciently than simultaneous solutions.

Curves for h-re�nement were created for the �uid and structural domain as

compared to the exact solution. Figures 7.14 and 7.15 show the h-re�nement for a

primary variable (v) and a secondary variable (p), respectively, for the �uid domain

using the L2 response error norm. Figure 7.16 shows the h-re�nement for the pri-

mary structure response (dy) and Figure 7.17 shows the secondary structure response

(�xy). All response types show an average re�nement rate of approximately p with

a lower bound of p� 1 and an upper bound of p + 1. In this case, not all p-values

exhibited optimal re�nement rates for either elliptic or non-elliptic formulations. No

theorem currently exists that bounds the error from one domain to the next. In the

FSI case, if the boundary deformation is not matched perfectly, the boundary error

will propagate to the �uid domain and it will a¤ect the error throughout. This

creates a condition that could amplify error for coupled problems and stray from the

theoretical elliptic and non-elliptic bounded error rates. The proven and published

error re�nement rates are based on singular domain solutions only [9,57]. No proof

currently exists for re�nement rates for multiple domain problems.

If the approximate �nite element solution does not produce an accurate bound-

ary deformation then the �uid�s boundary spatial coordinates will not be accurately

placed. For this case, the error on the boundary will become larger. In the case
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Figure 7.14 h-Re�nement Curve for Fluid Primary Response (v) for MMS Problem

Figure 7.15 h-Re�nement Curve for Fluid Secondary Response (p) for MMS Prob-
lem
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Figure 7.16 h-Re�nement Curve for Structure Primary Response (dy) for MMS
Problem

Figure 7.17 h-Re�nement Curve for Structure Secondary Response (�xy)

7-21



Figure 7.18 h-Re�nement Curve for All Fluid Responses Using a p-value of 4 for
MMS Problem

of higher-order p-elements, the element�s Jacobian is isoparametric and matches the

order of the �nite element interpolation. The higher-order shape functions will al-

low the edges of each element to bend and curve to help capture curved boundaries.

This allows for larger elements to be used along that boundary. However, if the

p-value is low and only a few elements are used, the edge coordinates of elements

that touch the boundary will be a poor approximation of the edge shape. Especially

in the case where the boundary is de�ned by a cosine function instead of a poly-

nomial, some small error will exist for any polynomial that attempts to capture its

shape. In fact, for this problem, when mesh size decreases from 0.5 to 0.25, a sudden

improvement in the re�nement rate is observed for a p-value of 4 (Figure 7.18). It

seems that for a coarse mesh, a p-value of 4 cannot capture the boundary shape well.

Alternatively, a mesh size of 0.5 worked well for a p-value of 5 and it could capture

the boundary well and maintain constant convergence rates for both coarse and �ne

meshes (Figure 7.19). Additionally, if the �uid response error is examined closely

(Figure 7.20), it shows that the peak errors, which drive the overall error, rest on

the interface boundary.
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Figure 7.19 h-Re�nement Curve for All Fluid Responses Using a p-value of 5 for
MMS Problem

Figure 7.20 Error Contour Plot for Secondary Fluid Response p for MMS Problem
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Figure 7.21 Sample Mesh Deformation from Collapsible Tube Problem (Problem
Dimensions Shown)

MMS was useful for verifying the simultaneously coupled LSFEM FSI code

considering the steady-state scenario. It also veri�ed both the �uid and structure

portions of the code.

7.6 Collapsible Tube Problem

A very challenging problem shown by Heil [76] consists of a tube with driven

�ow properties with a �exible top section that is modeled with a nonlinear structure.

The sample problem solved by Heil consisted of a 16m long tube that is 1m tall.

Only 5m of the top wall is �exible starting at 1m from the left. Figure 7.21 shows

a sample deformed boundary and mesh generated for this problem. The �gure also

shows the problem dimensions.

This problem was selected for replication due to its challenging nature. The

�uid is nonlinear and the structure is highly nonlinear allowing both horizontal and

vertical deformations and a pre-stress condition. The �uid was modeled using

Navier-Stokes equations. For this analysis, the v-p-� formulation was used. The

structure functional was shown by Heil

I =

Z L

0

[F ] dx =

Z L

0

�
h�0
 +

h
2

2
+
h3�2

24
� fext �Rw�

�
dx (7.12)

where h is the tube height, 
 is the geometrically nonlinear extensional strain, �0 is

the applied pre-stress, � is the wall curvature, fext is the wall traction vector on the

structure, and Rw is the structure location vector including structure deformation.
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� is de�ned through
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@2dy
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(7.13)

where � is de�ned as

� =

s�
1 +

@dx
@x

�2
+

�
@dy
@x

�2
(7.14)

The vector Rw is de�ned as

Rw = [rx + dx; ry + dy] (7.15)

which for this problem with the given dimensions becomes

Rw = [x+ dx; 1 + dy] (7.16)

The wall traction vector is de�ned through

fext = [f1; f2] (7.17)

where f1 and f2 are de�ned as

f1 =
�
Qpf � pext � �fx

�
nx � �fxyny (7.18)

f2 = ��fxynx +
�
Qpf � pext � �fy

�
ny (7.19)

pext is a user-speci�ed external pressure applied from outside the tube. Q is a

non-dimensional parameter consisting of both structural and �uid properties.

Q =
ufavg�

E
(7.20)

With all the variables speci�ed for the structural functional, the next step re-

quired to implement this into a LSFEM scheme involves transforming the functional
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into a system of di¤erential equations. Cook provided equations for easy conversion

from the functional to the derivative equation form. For a one-dimensional problem

the transformation equations are

@F

@dx
� @

@x

@F

@dx;x
+

@2

@x2
@F

@dx;xx
= 0 (7.21)

@F

@dy
� @

@x

@F

@dy;x
+

@2

@x2
@F

@dy;xx
= 0 (7.22)

This provides the two core di¤erential equations each of 5th order. To reduce these

equations down to the standard LSFEM 1st order form, eight intermediate variables

were introduced. They are de�ned as follows:

u1 =
@F

@dx;x
(7.23)

u2 =
@F

@dx;xx
(7.24)

u3 =
@u2
@x

(7.25)

u4 =
@dx
@x

(7.26)

v1 =
@F

@dy;x
(7.27)

v2 =
@F

@dy;xx
(7.28)

v3 =
@v2
@x

(7.29)

v4 =
@dy
@x

(7.30)

This produces a total of 10 di¤erential equations with 10 responses to solve this

nonlinear structure. The above formulation was modi�ed so the tractions (fext)

were also de�ned as unknowns or sharable degrees of freedom. This resulted in 10
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di¤erential equations and 12 unknowns but two of the unknowns were shared directly

with the equilibrium condition applied at the boundary.

The above problem was solved using both simultaneous and sequential methods

and using two prescribed externally applied pressures. The non-dimensional prop-

erties identi�ed here are as follows: Re = 500, Q = 10�2, h = 10�2, and �0 = 103:

The in�ow velocity pro�le is de�ned as

u (y) = 6y (1� y) (7.31)

which results in an average velocity of ufavg = 1:0. The �rst case external pressure

was 1.524 and the second case was 3.247. These two externally applied pressures

should produce a new vertical wall location at x = 3:5 of 1.000 and 0.5446 respec-

tively [76]. This wall location was selected due to its peak deformation. The �rst

case, if done properly, should produce no deformation.

A simultaneous solution generated a converged result after 63 nonlinear iter-

ations (Figure 7.22) for the �rst case. The problem exhibited the expected highly

nonlinear behavior. The new vertical wall location at x = 3:5 was 0.9839 which has

1.61% error with respect to the results shown by Heil [76]. Figure 7.23 shows the

vertical deformation pro�le for the �rst case. Figure 7.24 shows the �uid pressure

for this case which resulted in a nearly uniform Poisselle driven �ow problem. These

results were very near the results shown by Heil for both the �uid and structure [76].

The same case was solved using sequential methods. Figure 7.25 shows the

nonlinear convergence history which showed great di¢ culty in convergence using

sequential methods. It never converged through a total of 100 iterations and showed

no signs of approaching convergence. Figure 7.26 shows the vertical structural

deformations at 100 iterations which shows signi�cant errors in vertical displacement.

Figure 7.27 shows the �uid pressure plot and shows the extreme pressure gradients

around the large displacements near the �exible portion of the tube. This problem

7-27



Figure 7.22 Nonlinear Convergence History for Steady-State Collapsible Tube
Problem Using Simultaneous Solution Method (Case #1)

Figure 7.23 Vertical Deformations for Steady-State Collapsible Tube Problem Us-
ing Simultaneous Solution Method (Case #1)

Figure 7.24 Fluid Pressure Pro�le for Steady-State Collapsible Tube Problem Us-
ing Simultaneous Solution Method (Case #1)
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Figure 7.25 Nonlinear Convergence History for Steady-State Collapsible Tube
Problem Using Sequential Solution Method (Case #1)

showed that for a highly nonlinear steady-state FSI problem, simultaneous methods

can provide stronger convergence properties over sequential methods.

This �rst case exhibited accuracy for the simultaneous solution and veri�ed the

challenging nature of this problem. The second case exhibited the same nonlinear

di¢ culties but showed a reduction in accuracy. The larger external pressure created

larger deformations but were not as large as those reported by Heil [76]. The vertical

wall location at x = 3:5 converged to be 0.8438 when Heil reported the correct wall

location to be 0.5494 [76]. This is an error of 35.4% between the two analyses. This

is a signi�cant error which shows that there is a certain level of inaccuracy involved

with the LSFEM method for this problem and its formulation. The sequential

method was also used for this second case. Similar to Case #1, the sequential

method exhibited great di¢ culty converging this problem.

7.7 Domain Weighting Sensitivity to h- and p-values

The need to provide the correct residual weights for each domain is critical for

multi-domain problems when using LSFEM. The iterative residual weight balancing

method provided a successful solution for the steady-state FSI problems shown in this
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Figure 7.26 Vertical Deformations for Steady-State Collapsible Tube Problem Us-
ing Sequential Solution Method (Case #1)

Figure 7.27 Fluid Pressure Pro�le for Steady-State Collapsible Tube Problem Us-
ing Sequential Solution Method (Case #1)
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chapter. An examination of these �nal balanced weights follows. Their dependence

on h- and p-values were examined to determine if there was a trend that could be

used for future problems.

The �rst residual weight examination included hp-re�nement. Figure 7.28

shows the balanced weights using hp-re�nement for the MMS FSI problem. The

p-values were re�ned, but the mesh was coarsened, in order to keep the number

of degrees of freedom the same for every domain used within the coupled problem.

The re�nement plot shows very little sensitivity to the hp-re�nement. In fact, the

structure and the boundary interface weights showed absolutely no dependence on

an increasing p-value without change to the number of degrees of freedom. The �uid

and mesh deformation domain weights showed slight dependence on its p-value. In

fact, the �uid domain showed no sensitivity for a p-value from 6 to 10. The mesh

deformation domain showed the highest slope, but its weight had very little e¤ect

on the solution. Di¤erent weights, including weight values as high as those for the

�uid domain, were used on the mesh deformation domain and the solution did not

change at all. It was observed many times in this work that the �uid, structure,

and boundary interface domains were the critical domains such that their domain

residual weights had to be balanced in order to �nd a reasonable and/or accurate

solution. It was observed that the mesh deformation domain�s weight does not need

to be balanced with the other domains.

The e¤ect of h-re�nement was also examined. The MMS FSI problem was

solved for various element sizes and the convergence slopes were examined. Figure

7.29 shows the h-re�nement curve. Similar to the hp-re�nement, there was almost

no sensitivity of the balanced residual weights with respect to the h-values. The

residual weight slopes of the �uid and mesh deformation were the only domains that

exhibited some dependence on mesh size. In fact, the dependence can be considered

negligible; the slopes were less than 2 for all domains. The same h-re�nement

trends and the same weights were shown for other p-values (p =2, 4, 8, and 10). In
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Figure 7.28 hp-Re�nement of Balanced Residual Weights for MMS FSI Problem

other words, this study showed very little dependence on mesh size or shape function

order.

This re�nement study showed little to no dependence on h- and p-values. It

was shown that the user could �nd the proper domain weights for low p-values with a

coarse mesh and use those weights to determine a higher-order solution with re�ned

h- and p-values. This means that the residual weight balancing could be used on a

computationally cheap problem and then those weights could be �xed for a re�ned

problem and still achieve highly accurate solutions.

Even though h- and p-values had very little e¤ect on determining proper resid-

ual weights, it was observed that balanced residual weights varied with problem

type. It was shown that residual weights used on one problem will not work on an-

other. As an example case, the �nal balanced weights used for the double channel

problem were applied to the MMS problem. These weights generated poor results.

Alternatively, the �nal balanced weights used for the MMS problem were also un-

successfully applied to the double channel problem. It is suggested here that future

LSFEM users should not rely on one problem to de�ne residual weights for another.

7-32



Figure 7.29 h-Re�nement of Balanced Residual Weights for MMS FSI Problem
(p-value = 6)

As soon as the boundary conditions change or if the domains change, the residual

weights must be redetermined completely.

7.8 Domain Weighting Sensitivity to Material Properties

Since no signi�cant dependence was shown with respect to h- or p-values, the

double channel problem was solved several times while changing the Modulus of

Elasticity (E). Figure 7.30 shows the change in each domain�s residual weight

by changing E from 10 GPa to 1000 GPa. For all E values, the solutions at

the interface boundary match the known analytic solution at that location for each

property value [74]. The �gure shows little to no dependence on this property value.

This shows that the property values might not strongly dictate what the residual

weights should be for this problem.

7.9 Comparison of LSFEM-LSFEM to LSFEM-WGFEM FSI Solutions

Kayser-Herold andMatthies compared results of an FSI problem using a scheme

that used LSFEM for both the �uid and structure (LSFEM-LSFEM) to a scheme

that used LSFEM for the �uid and WGFEM for the structure (LSFEM-WGFEM).
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Figure 7.30 Residual Weight Dependence on Modulus of Elasticity for Double
Channel Flow Problem

They showed poor results for the LSFEM-LSFEM scheme and accurate results for

the LSFEM-WGFEM scheme. They mentioned that the issues with the LSFEM-

LSFEM were unknown at that time [23].

The iterative residual weight balancing method has been absolutely critical

here for multi-domain problems. Kayser-Herold and Matthies used manual weight

balancing methods to attempt to make those LSFEM-LSFEM problems work. In

fact, they used simple problems, such as single-domain problems, to de�ne their

residual weights for more complex problems, such as FSI problems [23]. This could

prove to have been a critical error.

A similar comparison was performed here. The MMS FSI problem was solved

using both WGFEM and LSFEM for the structural domain. LSFEM was used

to solve for the �uid, boundary interface, and mesh deformation domains. Since

the structural stress boundary conditions are implicit instead of direct degrees of

freedom within a WGFEM scheme using (4.40) and (4.38), the coupled problem

was solved sequentially for both LSFEM-LSEFM and LSFEM-WGFEM schemes.

The sequential solution for the LSFEM-WGFEM scheme consisted of solving the
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�uid domain �rst. After that, the �uid pressures and stresses were converted into

resultant forces in the x and y directions. Those resultant forces were used as

right hand side values (4.40) within the WGFEM scheme for the structural domain.

After that, the displacements from the structural domain were used as boundary

conditions for the mesh deformation domain. It was a purely sequential solution

without any simultaneous portions.

A simultaneous solution for LSFEM-WGFEM was unsuccessful due to the in-

ability to balance the multiple domains. For a pure LSFEM-LSFEM simultaneous

scheme, it was possible to balance each domain, since there was an residual error

indicator that was based on the same norm and functional throughout. This is not

the case for the simultaneous LSFEM-WGFEM scheme. This created a situation

where the WGFEM weighting factor could not be �gured into the simultaneous solu-

tion successfully. This drove the pure sequential solution for the LSFEM-WGFEM

case.

Table 7.6 shows the LSFEM-WGFEM vs. LSFEM-LSFEM L2 response error

comparisons. The L2 response error values were integrated across the entire domain

and were compared directly with the known exact solution. The table shows the

results from the MMS FSI problem using a p-value of 4. The LSFEM-LSFEM er-

ror was consistently 103 times better than the LSFEM-WGFEM case. This was

shown for both the structure and �uid domains. The boundary interface error was

improved by a factor of 102 for LSFEM-LSFEM. Even though the error values were

signi�cantly di¤erent between the two schemes, the contour plots of the responses

appeared very similar (Figure 7.31). It was nearly impossible to di¤erentiate be-

tween the two schemes�responses and the exact solution with the naked eye. In

other words, the LSFEM-WGFEM scheme was accurate, just not as accurate as the

LSFEM-LSFEM scheme.

This comparison was completed for other p-values. The LSFEM-WGFEM

solution did not converge as well as the LSFEM-LSFEM solution. The error for
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the LSFEM-WGFEM scheme did not improve even with p-re�nement. Table 7.7

shows the same comparison except for a p-value of 8. This shows that the LSFEM-

WGFEM has reached a limit in its accuracy.

The reduction in the convergence rate for the LSFEM-WGFEM scheme could

mainly come from the fact that the stresses were applied as a right hand side value

within the WGFEM scheme instead of being directly sharable degrees of freedom in

a LSFEM scheme. LSFEM has already been shown to hold a better convergence

rate with respect to the secondary variables, but that accuracy is magni�ed in a

coupled problem when the error can transfer to other domains. This will a¤ect the

error throughout, since the coupled problem is dependent on the stress boundary

accuracy.

The main reason for the accurate LSFEM-LSFEM solution, even though Kayser-

Herold and Matthies produced poor results for that scheme, was because proper

residual weights were used for the multiple domain problem. Kayser-Herold and

Matthies used manually adjusted weights from other simpler problems and did not

rebalance the weights for their FSI problem [23]. This may create unreliable results

for a steady-state or transient FSI problem.

7.10 Examination of Nonconformal Mesh in FSI Solutions

The bene�ts of a nonconformal mesh in a coupled FSI problem are apparent.

Most FSI problems require a �uid domain with a �ne mesh and/or a high polynomial

order with a structure that needs fewer degrees of freedom to obtain the same level

of accuracy within each domain. In fact, it was shown in Tables 7.4 and 7.5 that

even though the same number of elements and polynomial order was used within

the �uid and structural domain, the structure consistently exhibited a better error

value (by a factor of 101 � 102) than the �uid error. This implies that a coarser

structural domain or a �ner �uid domain would produce similar error values between
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Response Type LSFEM-WGFEM Response Type LSFEM-LSFEM

Fluid (
F ) 
F Error Fluid (
F ) 
F Error

vfx 1.44591E-03 vfx 1.15892E-06

vfy 1.07913E-03 vfy 1.15088E-06

p 7.47513E-03 p 4.51499E-05

�fx 3.38192E-03 �fx 3.47383E-05

�fy 3.14865E-03 �fy 3.36043E-05

�fxy 4.71469E-03 �fxy 2.32214E-05

Structure (
S ) 
S Error Structure (
S ) 
S Error

usx 3.96261E-04 usx 1.78895E-07

usy 2.17139E-03 usy 1.61041E-06

�sx 2.96364E-03 �sx 1.53404E-05

�sy 1.52591E-02 �sy 7.96433E-05

�sxy 9.31650E-03 �sxy 1.59913E-05

Stress Equilibrium (�FS ) �FS Error Stress Equilibrium (�FS ) �FS Error

p 2.12825E-02 p 2.05715E-04

�fx 1.66133E-02 �fx 1.58065E-04

�fy 1.59324E-02 �fy 1.97619E-04

�fxy 1.18321E-02 �fxy 1.30933E-04

�x 1.05990E-02 �sx 1.26473E-04

�y 8.08637E-03 �sy 3.23345E-04

�sxy 1.04412E-04

Table 7.6 Error Comparisons for LSFEM-LSFEM vs. LSFEM-WGFEM Schemes
for MMS FSI Problem (p=4)
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Response Type LSFEM-WGFEM Response Type LSFEM-LSFEM

Fluid (
F ) 
F Error Fluid (
F ) 
F Error

vfx 1.43657E-03 vfx 3.86702E-08

vfy 1.08149E-03 vfy 3.24531E-08

p 7.97496E-03 p 2.89434E-07

�fx 3.47391E-03 �fx 2.63803E-07

�fy 3.20336E-03 �fy 3.08079E-07

�fxy 4.79951E-03 �fxy 2.19656E-07

Structure (
S ) 
S Error Structure (
S ) 
S Error

usx 3.97637E-04 usx 1.48192E-09

usy 2.15617E-03 usy 1.19533E-08

�sx 2.95813E-03 �sx 2.47712E-07

�sy 1.52552E-02 �sy 5.95197E-07

�sxy 9.32570E-03 �sxy 1.75334E-07

Stress Equilibrium (�FS ) �FS Error Stress Equilibrium (�FS ) �FS Error

p 2.28463E-02 p 1.27052E-06

�fx 1.65237E-02 �fx 1.88110E-06

�fy 1.58746E-02 �fy 1.84261E-06

�fxy 1.25420E-02 �fxy 1.78596E-06

�x 1.12330E-02 �sx 2.58359E-06

�y 9.93517E-03 �sy 2.31604E-06

�sxy 1.78353E-06

Table 7.7 Error Comparisons for LSFEM-LSFEM vs. LSFEM-WGFEM Schemes
for MMS FSI Problem (p=8)
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Figure 7.31 Fluid Velocity Contour Plots for LSFEM-LSFEM vs. LSFEM-
WGFEM Case Study
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the domains. In addition, it seems that the order of accuracy of the structural solver

is stronger than that of the �uid solver.

Nonconformal meshing was examined for the MMS FSI problem. To do this,

new resultant force relationships were created for each domain. This allows a single

response to be equated, either weakly or strongly, at a boundary. This was done

because the nonconformal LSFEM scheme that was implemented here uses a one-

to-one relationship. Instead of using a boundary relationship that relates four

�uid responses to three structural responses (7.9) and (7.10), resultant forces were

generated for each domain so that their one-to-one relationship could be equated.

The �uid stresses and pressures are converted to resultant forces (�fx, �
f
y) on

the boundary,

�pnx + �fxnx + �fxyny � �fx = 0 (7.32)

�fxynx � pny + �fyny � �fy = 0 (7.33)

the structure stresses are converted to resultant forces (�sx, �
s
y) on the boundary,

�sxnx + �sxyny � �sx = 0 (7.34)

�sxynx + �syny � �sy = 0 (7.35)

and then the resultant forces are equated, i.e.,

�fx � �sx = 0 (7.36)

�fy � �sy = 0 (7.37)

The resultant force values are directly shared for a conformal mesh case or they are

weakly equated using LSFEM nonconformal mesh methods for the nonconformal

case.
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For this problem, another nonconformal mesh was required at the structure

and mesh deformation interface boundary to match boundary displacements. The

�uid domain is updated using a mesh deformation domain with the same mesh size

and polynomial order. The response from the mesh deformation is used to de�ne

the �uid domain mesh. The polynomial order used for the �uid Jacobian must

be the same as the mesh deformation domain�s responses unless a weakly enforced

relationship is desired across the entire domain. If a weak relationship is not desired

across the entire domain, then the �uid and mesh deformation domains must have

the same mesh size and polynomial order. Since the structure shares responses with

both domains, those paired responses must be equated using nonconformal meshing.

As such, the displacements at the interface boundary are weakly equated through

the boundary integral

dsx � dDx = 0 (7.38)

dsy � dDy = 0 (7.39)

The system of equations, including (7.32-7.39), were solved simultaneously.

The �rst case (Case A) includes varying the structural domain�s p-value from 2 to

4 while keeping the �uid domain�s p-value at 5. This was performed using hp-

re�nement where each domain had the same number of degrees of freedom at the

boundary interface (41 modes on the edge). This means that for a p-value of 2

there were twenty edge elements, for a p-value of 4 there were ten edge elements,

and for a p-value of 5 there were eight edge elements. Table 7.8 shows the L2

response error norm results of Case A and Figure 7.32 shows sample meshes. Other

p-values were analyzed, but they did not show an improvement beyond a p-value of

4. This was expected, since the �uid domain was held at a p-value of 5 throughout

and it limited how accurately the problem could be solved since the number of

degrees of freedom were constant throughout. Similar results were shown for other

nonconformal mesh studies performed within this research (Section 6.4.2). All error
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Figure 7.32 Sample Nonconformal Meshes for Case A (MMS FSI Problem)

values were comparable to the conformal cases. In fact, the error values were a little

better due to the fact that the �uid domain had a higher p-value, which improved

accuracy on the �uid side.

Case B included keeping the p-values the same between the �uid and structural

domains but the �uid always had twice as many degrees of freedom on the boundary

interface. hp-re�nement was used as before. Figure 7.33 shows sample meshes

for each domain for a p-value of 4. Table 7.9 shows the results from this case

study. It shows that the solution was improved from a conformal mesh case. This

was expected since more degrees of freedom were used for the �uid domain and

should improve the problem�s overall accuracy. This example demonstrates that the

nonconformal mesh methodology was successful using LSFEM for FSI problems.
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Response Nonconformal (p = 2) Nonconformal (p = 4) Conformal (p = 2) Conformal (p = 4)
Fluid (
F ) 
F Error 
F Error 
F Error 
F Error

vfx 8.89771E-06 1.53886E-07 2.07293E-05 1.48249E-06

vfy 6.43913E-06 1.36838E-07 1.94184E-05 1.19589E-06

p 1.84712E-04 7.84766E-06 5.88630E-04 3.69020E-05

�fx 5.71071E-05 6.15685E-06 3.75388E-04 2.60150E-05

�fy 6.17173E-05 6.49535E-06 4.27374E-04 2.43861E-05

�fxy 4.46730E-05 2.57866E-06 3.56675E-04 1.40549E-05

Structure (
S ) 
S Error 
S Error 
S Error 
S Error

usx 7.33010E-07 1.92023E-08 2.92216E-06 1.33135E-07

usy 1.47682E-05 3.67300E-07 8.71639E-06 2.10977E-06

�sx 1.31697E-05 1.05336E-06 1.62271E-04 5.62331E-06

�sy 4.28406E-04 5.27928E-06 4.92029E-04 2.40900E-05

�sxy 4.99006E-05 1.43216E-06 1.58260E-04 7.49081E-06

Stress (�FS ) �FS Error �FS Error �FS Error �FS Error

p 5.33536E-04 1.54444E-05 9.71766E-04 7.49314E-05

�fx 1.59049E-04 7.82698E-06 3.45449E-04 3.53263E-05

�fy 2.70503E-04 8.07868E-06 4.95392E-04 3.79874E-05

�fxy 9.66957E-05 1.00473E-05 1.11354E-03 4.77296E-05

�sx 4.32653E-05 9.36793E-06 8.61834E-04 4.87450E-05

�sy 8.01716E-04 1.73249E-05 9.72909E-04 8.50407E-05

�sxy 1.05721E-04 7.10668E-06 9.43793E-04 3.06839E-05

Nonconformal d (�FS ) �FS Di¤ �FS Di¤ �FS Di¤ �FS Di¤

dx 1.05054E-14 1.04939E-14 N/A N/A

dy 4.29726E-06 3.82585E-08 N/A N/A

Nonconformal � (�FS ) �FS Di¤ �FS Di¤ �FS Di¤ �FS Di¤

�x 1.82233E-05 2.25666E-06 N/A N/A

�y 2.52517E-04 3.23227E-06 N/A N/A

Table 7.8 Error Values for FSI Nonconformal Study (Case A)
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Response Nonconformal (p = 2) Nonconformal (p = 4) Conformal (p = 2) Conformal (p = 4)
Fluid (
F ) 
F Error 
F Error 
F Error 
F Error

vfx 3.21716E-06 2.35550E-07 2.07293E-05 1.48249E-06

vfy 3.23851E-06 1.76984E-07 1.94184E-05 1.19589E-06

p 1.34762E-04 2.21760E-06 5.88630E-04 3.69020E-05

�fx 1.10666E-04 1.72183E-06 3.75388E-04 2.60150E-05

�fy 1.15139E-04 1.55132E-06 4.27374E-04 2.43861E-05

�fxy 5.41894E-05 8.63464E-07 3.56675E-04 1.40549E-05

Structure (
S ) 
S Error 
S Error 
S Error 
S Error

usx 4.58845E-07 8.55150E-09 2.92216E-06 1.33135E-07

usy 3.01387E-06 7.29471E-08 8.71639E-06 2.10977E-06

�sx 1.65145E-05 1.17190E-07 1.62271E-04 5.62331E-06

�sy 3.85828E-04 3.35722E-06 4.92029E-04 2.40900E-05

�sxy 2.48331E-05 3.17934E-07 1.58260E-04 7.49081E-06

Stress (�FS ) �FS Error �FS Error �FS Error �FS Error

p 4.27273E-04 6.72181E-06 9.71766E-04 7.49314E-05

�fx 3.61207E-04 2.87974E-06 3.45449E-04 3.53263E-05

�fy 3.84701E-04 2.91775E-06 4.95392E-04 3.79874E-05

�fxy 1.85681E-04 2.52983E-06 1.11354E-03 4.77296E-05

�sx 8.66802E-05 7.60476E-07 8.61834E-04 4.87450E-05

�sy 8.46663E-04 8.13260E-06 9.72909E-04 8.50407E-05

�sxy 1.06530E-04 1.19966E-06 9.43793E-04 3.06839E-05

Nonconformal d (�FS ) �FS Di¤ �FS Di¤ �FS Di¤ �FS Di¤

dx 3.23882E-14 3.17404E-14 N/A N/A

dy 7.54833E-14 2.58283E-14 N/A N/A

Nonconformal � (�FS ) �FS Di¤ �FS Di¤ �FS Di¤ �FS Di¤

�x 5.42403E-05 1.00164E-06 N/A N/A

�y 1.22079E-04 6.36775E-07 N/A N/A

Table 7.9 Error Values for FSI Nonconformal Study (Case B)
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Figure 7.33 Sample Nonconformal Meshes for Case B (MMS FSI Problem)
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VIII. Transient Fluid-Structure Interaction

Transient FSI problems are di¢ cult to solve and have proven to challenge numerical

schemes when sequential solution schemes are applied [19]. It was shown in previous

chapters that simultaneous and sequential schemes provide very similar results for

steady-state FSI problems. Since simultaneous multi-domain LSFEM schemes re-

quire residual weight balancing, the steady-state sequential solution scheme provided

the same level of accuracy with signi�cantly lower processing time. For steady-state,

the sequential method was preferred. For transient problems, Bendiksen argued that

simultaneous methods may show a signi�cant improvement over sequential solution

methods for complex problems. In fact, he showed that convergence and accuracy

can be improved with fewer degrees of freedom in a simultaneous solution scheme.

8.1 Example Transient FSI Problem Using MMS

8.1.1 Problem Properties. A new MMS FSI problem was created for tran-

sient FSI investigation. The steady-state MMS problem described in Section 7.5

was modi�ed slightly such that the boundary deformation has a harmonic response,

e.g.,

dsx = 0 (8.1)

dsy = 1 + h (1� cos (2�x)) sin (2�t) (8.2)

This creates a new MMS problem with new responses within the �uid, structure,

and boundary interface. This new transient MMS FSI problem was complex enough

to challenge Bendiksen�s argument whether simultaneous solutions will provide ac-

curacy improvement over a sequential solution. In addition, this complex problem

provided a known exact solution to compare numerical results from the LSFEM

analysis.
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The �rst analysis was performed to compare simultaneous and sequential solu-

tions using only a single time step of 0.01 seconds. This time step size was smaller

than the minimum time step size dictated by the CFL condition for both the �uid

and structural domains (min (�t) = 0:36 sec). The transient solution should be

convergent using this time step. The transient form of the v-p-� Navier Stokes for-

mulation was used for the �uid and the transient u-v-� structural formulation was

used for the structure. Each time step included several nonlinear subiterations to

reach proper nonlinear problem convergence. Each time step was converged to a

relative convergence of 10�9 between nonlinear subiterations.

Residual balancing was performed similarly to the steady-state MMS FSI prob-

lem except the structural domain was balanced at the equation level where similar

equations were paired by their equation type. This was done because it was shown

in Section 4.7.1 that the transient structure requires balancing at the element level.

In other words, the residual balancing was performed at the domain level for the �uid

and residual balancing was performed at the equation pairing level for the structure.

This means that the �uid requires only one residual weight whereas the structure

requires three weights. This means that the convergence with respect to the residual

weight balancing is easier for the �uid than the structure.

8.1.2 Single Time Step Results (T=0.01 sec). Table 8.1 shows the inte-

grated L2 response error norms from a single time step. Very little di¤erence in

error was observed between the sequential and simultaneous solutions. In addition,

the error values here were higher than that observed for the steady-state MMS FSI

problem. This is due to the lower-order accuracy provided by the discretization

of the temporal derivative for the selected time step. The Crank-Nicolson method

was used here and it provides an accuracy on the order of �t2. Since the time step

size was 0.01 seconds, the order of the error should be somewhere near 10�4. This

was observed throughout the �uid and structural domains. This implies that the

temporal discretization drives the accuracy of this problem.
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Response Type Simultaneous Sequential

Fluid (
F ) 
F Error 
F Error

vfx 2.25968e-004 1.15305e-004

vfy 1.32324e-004 2.28616e-004

p 4.54705e-003 1.02859e-002

�fx 1.49659e-003 1.02176e-003

�fy 7.56980e-004 7.65443e-004

�fxy 3.19149e-003 3.51992e-003

Structure (
S ) 
S Error 
S Error

usx 2.30352e-007 2.30300e-007

usy 1.46175e-006 1.46327e-006

�sx 2.84958e-006 4.64316e-006

�sy 5.20613e-006 4.56480e-005

�sxy 1.46345e-005 1.51212e-005

vsx 4.60704e-005 4.60600e-005

vsy 2.13707e-004 2.14693e-004

Stress Equilibrium (�FS ) �FS Error �FS Error

p 4.20029e-003 2.58490e-002

�fx 5.74661e-003 4.01084e-003

�fy 4.04916e-003 3.73267e-003

�fxy 4.55699e-004 8.12926e-003

�sx 1.06315e-006 4.53707e-005

�sy 1.90939e-005 6.48516e-004

�sxy 4.16041e-005 7.14165e-005

Table 8.1 Error Comparisons for Sequential Vs. Simultaneous Solutions for Tran-
sient MMS FSI Problem Using Only One Time Step (t=0.01 secs, 100
Elements with p-value of 4)

8-3



1.00E­12

1.00E­11

1.00E­10

1.00E­09

1.00E­08

1.00E­07

1.00E­06

1.00E­05

1.00E­04

1.00E­03

1.00E­02

1.00E­01

1.00E+00
0.00010.0010.010.1

Time (sec)

LS
 R

es
id

ua
l E

rro
r

Fluid Error
Struct Error
Mesh Def error

Figure 8.1 �t-Re�nement Examining the LSFEM Residual for Transient MMS
FSI Problem Using Simultaneous Method (t = 0:01 seconds, 100 Ele-
ments with p-value of 4)

8.1.3 Dependence on Error With Respect to Time Step Size. A time step

size study was performed on this problem to examine the e¤ects of time step size and

to test when the LSFEM spatial discretization overcomes the �nite volume temporal

discretization. The same problem was solved to a �nal time of 0.01 seconds but

several di¤erent time step sizes were used. Time step sizes of 0.000625, 0.00125,

0.0025, 0.005, and 0.01 seconds were used. Figure 8.1 shows the LSFEM residual

error for each domain using �t-re�nement. The �gures show that the re�nement

produces a constant convergence rate with respect to �t from 0.01-0.00125 seconds.

For time steps smaller than 0.00125 seconds, the �uid convergence rate �attens out

which implies that the spatial discretization error will dominate. As expected, the

error is on the order of n�t2 for the averaged response error.

The same examination into �t re�nement was performed using a sequential

method. Figure 8.2 shows similar residual values for all domains. It also shows the

same time step size when the spatial discretization dominates for this problem.
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Figure 8.2 �t-Re�nement Examining the LSFEM Residual for Transient MMS
FSI Problem Using Sequential Method (t = 0:01 seconds, 100 Elements
with p-value of 4)

8.1.4 Multiple Time Step Results (T=0.25 sec). The next analysis included

25 total time steps. This creates the maximum boundary deformation and should

push the accuracy of the scheme. The same time step was used as before (0.01 sec).

Table 8.2 shows the results from this analysis. In this case, the sequential solution

performed poorly. Not only were the error values from the sequential solution o¤ by

a factor of 101 � 102 compared to the simultaneous solution, but the accuracy was

visually apparent. Figure 8.3 shows the error contour plots between the simultaneous

and sequential solution for horizontal �uid velocity. Not only are the error values

apparent, but the boundary deformation is entirely inaccurate. Similarly, Figure 8.4

shows the error plots for the vertical structure displacement. These responses govern

the boundary displacement. Large error values were observed for the sequential

solution, whereas the simultaneous solution remained fairly accurate. In fact, the

simultaneous solution was on the order of the temporal discretization error over 25

time steps (2.5 10�3).
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Response Type Simultaneous Sequential

Fluid (
F ) 
F Error 
F Error

vfx 2.19762e-003 1.54297e-002

vfy 1.18154e-003 6.75323e-003

p 3.55386e-002 1.46692e-001

�fx 5.84948e-003 2.73866e-002

�fy 3.60075e-003 2.57544e-002

�fxy 6.39200e-003 6.38235e-002

Structure (
S ) 
S Error 
S Error

usx 7.81146e-005 3.55236e-004

usy 6.15686e-004 7.47124e-003

�sx 1.24302e-003 5.72693e-002

�sy 9.96661e-003 5.80121e-001

�sxy 3.10044e-003 3.70797e-002

vsx 7.66873e-004 2.08542e-002

vsy 7.09156e-003 4.08084e-001

Stress Equilibrium (�FS ) �FS Error �FS Error

p 6.38655e-002 4.23169e-001

�fx 9.13863e-003 1.31696e-001

�fy 1.11481e-002 1.17152e-001

�fxy 1.55688e-002 1.93881e-001

�sx 5.07238e-003 3.52355e-001

�sy 5.44680e-002 3.37536e+000

�sxy 1.42448e-002 1.75113e-001

Table 8.2 Error Comparisons for Sequential Vs. Simultaneous Solutions for Tran-
sient MMS FSI Problem Using 25 Time Steps (t=0.25 secs, 100 Elements
with p-value of 4)
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Figure 8.3 Horizontal Fluid Velocity Error Contour Plot for Sequential vs. Simul-
taneous Comparison for Transient MMS FSI Problem (t=0.25 sec)
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Figure 8.4 Vertical Structure Displacement Error Contour Plot for Sequential vs.
Simultaneous Comparison for Transient MMS FSI Problem (t=0.25
sec)
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Figure 8.5 Number of Nonlinear Sub-Iterations Required to Converge Each Time
Step

8.1.5 Examination of Time Step Size Re�nement for Sequential Solution Ac-

curacy. An attempt was performed to improve the sequential method�s accuracy.

Amuch smaller time step was attempted here (�t=0.001 sec). The solution diverged

quickly after 32 time steps. Figure 8.5 shows the number of nonlinear sub-iterations

required within each time step to reach convergence. Figure 8.6 shows how the

total iterative norm blows up after the total number of iterations reaches a divergent

point. The sequential method showed similar poor convergence properties for other

FSI problems [25, 26]. In retrospect, it is surprising that the sequential method

using a time step size of 0.01 sec was able to converge at all. An even smaller time

step size was used (�t=0.0001 sec) and still showed poor convergence behavior.

This con�rms the fact that sequential methods in a transient FSI scheme require a

unique method to converge [19, 25, 26]. A small time step size will not �x all poor

convergence sequential solutions.

8.1.6 Full Period Results (T=1.00 sec). The next analysis included 100

time steps to a total time of 1.0 sec. The simultaneous method was able to solve
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Figure 8.6 L2 Norm History Through All Iterations (Sub-Iterations and Time Step
Iterations)

the problem successfully (Table 8.3). As shown in the table, the error is consistent

with n�t2. This created a high pressure response error norm (Figure 8.7). There

were no surprises beyond that. The sequential method results were not shown here

due to the sequential method�s poor convergence ability. It was not possible to solve

this problem using the sequential method.

This problem showed that Bendiksen�s argument for simultaneous solutions for

FSI problems is valid for this transient MMS problem. In addition, it veri�es the

transient LSFEM code for simultaneous solutions.

It is advantageous for future work to examine transient FSI using a space-

time coupled approach such that the temporal discretization error would not factor

into the solution. Only the LSFEM discretization would become a factor and it

would be a pure examination into LSFEM FSI. Unfortunately, a space-time coupled

approach here would require three-dimensional FEM where x, y and t would be

the coordinates. Three-dimensional elements were not programmed into this code.
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Response Type Simultaneous

Fluid (
F ) 
F Error

vfx 2.99420e-004

vfy 3.99616e-004

p 2.65711e-001

�fx 2.41337e-003

�fy 2.28175e-003

�fxy 2.56883e-003

Structure (
S ) 
S Error

usx 2.50481e-004

usy 6.73278e-004

�sx 2.97778e-003

�sy 5.45499e-003

�sxy 2.02368e-003

vsx 1.05415e-003

vsy 6.03527e-003

Stress Equilibrium (�FS ) �FS Error

p 8.00236e-001

�fx 2.38161e-002

�fy 2.19263e-002

�fxy 3.33759e-002

�sx 3.89135e-004

�sy 3.89480e-003

�sxy 1.77479e-003

Table 8.3 Error for Simultaneous Solutions for Transient MMS FSI Problem Using
100 Time Steps (t=1.00 secs, 100 Elements with p-value of 4)
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Figure 8.7 Pressure Error Plot for Transient MMS Problem (T=1.00 sec)

Implementing such a thing would provide bene�t in future examinations of LSFEM

FSI.

8.1.7 Dependence on Balanced Domain Residual Weights With Respect to

Time Step Size. The next analysis examined how balanced residual weights

depend on the size of �t. Residual weight dependence on h-values, p-values, and

property values such as Modulus of Elasticity have been examined. All these cases

showed little to no dependence on those values. Figure 8.8 also shows that there is

also no dependence on the size of the time step.

The next examination into residual weights involved how residual weights

change as time progresses. Figure 8.9 shows how the residual weights change through

time. This was performed on the MMS problem to 0.25 sec. All residual domain

weights exhibited only a slight change with time. The weights change abruptly at

the beginning but smooth out with only slight changes afterwards.
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Figure 8.8 Residual Weight Dependence on �t for Transient MMS Problem
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Figure 8.9 Residual Weight Evolution Through Time for Transient MMS Problem
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8.2 Example Transient Collapsible Tube FSI Problem

The collapsible tube problem was attempted using transient FSI methods. The

same problem conditions as those shown in Section 7.6 were used here except the

external pressure was 1.667 and the velocity boundary conditions at the interface

wall must match �
vfx ; v

f
y

�
=
@Rw

@t
(8.3)

The same transient simultaneous solution methods as those used for the above tran-

sient MMS problem were used here. Unfortunately, the problem was not able to

converge for various time step sizes. The problem exhibited highly oscillatory de-

formations. In addition, the deformation were so large that the mesh would cross

itself and create "negative space". Despite several attempts, convergence was never

reached. It is unknown where the source of this error originated. It could be a

result of highly nonlinear behavior, inadequate solution methods, improper problem

formulation, or inadequate code.

8-13



IX. Conclusions

9.1 Research Goals

The main objective of this research was to compare the least-squares �nite ele-

ment method to other commonly used methods and implement the least-squares

�nite element formulation for simultaneously coupled FSI problems. This was

achieved by �rst comparing the least-squares �nite element method to other tradi-

tional numerical methods such as �nite di¤erencing andWeak Galerkin �nite element

methods and, second, by comparing the simultaneously coupled �uid structure in-

teraction method to a sequentially coupled method. It was demonstrated that each

unique capability required to accomplish a transient gust analysis for the joined-wing

sensor-craft was feasible and accurate. This provided a "proof of technology" for the

least-squares �nite element method in the context of FSI. In addition, challenging

problems were used for both steady-state and transient FSI with a known analytic

solution and a LSFEM simultaneous solution was successful in solving those prob-

lems. It was shown that LSFEM is comparable to other common methods and it is

an accurate method to use for FSI problems.

9.2 Research Contributions

The work completed here had new and unique aspects relevant to the aerospace

research community. Contemporary research has been completed in the area of LS-

FEM formulations for FSI problems [23,24]. However, those researchers had limited

success. Although they succeeded in examining various formulations of �uid and

structural LSFEM and in examining linear steady-state LSFEM FSI, they had great

di¢ culty solving complex and nonlinear steady-state FSI problems, transient FSI

problems, and transient structural problems using LSFEM in either a simultaneous

or sequential formulation. The research presented here overcame those obstacles by

implementing an iterative residual balancing method. This method was a critical
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aspect of successfully solving FSI via LSFEM. A unique residual weight balanc-

ing scheme was created that roughly doubled the computational expense but was

capable of �nding the residual weights necessary to solve transient structure prob-

lems, complex and nonlinear steady-state FSI problems, and nonlinear transient FSI

problems.

Other essential ideas and comparisons were also shown through this research.

LSFEM is comparable to WGFEM for structures and �nite di¤erencing for �uids.

LSFEM exhibited better error values and convergence rates, relative to WGFEM,

for the secondary variables. Those secondary variables are commonly used for

equilibrium in FSI problems. LSFEM exhibited solid accuracy for incompressible

Navier-Stokes and for linear Stokes analysis. LSFEM did not perform as well as

�nite di¤erencing for a compressible Euler problem since it could not match peak

values at key points within the problem but it was able to match the rest of the

problem closely. In addition, LSFEM is a highly capable method for nonconformal

meshing, which is a practical necessity for FSI. Nonconformal meshing works well

with LSFEM due to the boundary integral that is a natural feature of the least-

squares formulation. Overall, LSFEM is a �exible method capable of handling many

di¤erent types of analyses using a single "black-box". It was shown that LSFEM

can be used accurately for �uids, structures, boundary interface relationships, weak

boundary conditions, and nonconformal meshes in either a sequential or simultaneous

scheme for steady-state problems or a simultaneous scheme for transient problems.

9.3 Summary of Code Veri�cations Performed

A major task that was required before any comparisons or key abilities were

demonstrated was to verify each portion of the code used within this research. Many

problems were completed so that the code could be veri�ed properly. If an exact

solution was known throughout the analysis domain, re�nement curves of response

9-2



errors relative to the analytic response were created for that problem to provide

veri�cation.

The �rst task performed was to verify the one-dimensional and two-dimensional

basic LSFEM code. A simple one-dimensional Euler-Bernoulli beam problem and a

simple two-dimensional Poisson�s problem provided exact solutions for comparison.

These problems were solved using LSFEM code successfully. Although extraordinar-

ily simple, these examples laid the foundation for the code to solve other steady-state

problem types. The next problem consisted of a simple one-dimensional wave prob-

lem. This problem was transient in nature and provided a way for the code to be

veri�ed using temporal derivatives. Space-time coupled and decoupled formulations

were both veri�ed for the one-dimensional wave problem.

Structural formulations were fully tested and veri�ed here. A nonlinear Euler

Bernoulli beam problem was solved successfully for a steady-state case by comparing

results taken from Reddy�s nonlinear FEM textbook [11]. After that, three prob-

lems using two-dimensional in-plane elasticity were analyzed. For the �rst problem,

Timoshenko and Goodier provided an exact solution for comparison purposes [61].

The second problem was created using the method of manufactured solutions [64].

Since this problem was manufactured, the exact solution was known for comparison

purposes. Re�nement curves were created for these two problems where the con-

vergence rates met or were near minimum criteria. In addition, WGFEM code was

veri�ed using the manufactured elasticity problem.

After the steady-state structural problems were veri�ed using both WGFEM

and LSFEM code, the transient realm was examined for structures. Unique resid-

ual weight balancing was required to obtain proper solutions for a simple clamped-

clamped beam problem with an initial velocity applied. Once the iterative residual

weight balancing scheme was applied, the proper weights were determined for this

problem using four di¤erent types of analysis. A linear beam, a nonlinear beam,

9-3



in-plane elasticity using LSFEM and in-plane elasticity using WGFEM were used

successfully for this transient problem.

Fluid formulations were also fully tested here. First, to continue testing the

transient LSFEM code, a one-dimensional shock-tube problem was solved success-

fully using compressible and inviscid Euler equations. The shock tube problem also

veri�ed the coupled and decoupled space-time formulations for transient LSFEM by

comparison with commonly published results [9]. After that, a classic airfoil in uni-

form �ow with an angle of attack was considered. LSFEM results were compared

to results obtained from �nite volume code and to experimental data provided from

other published works [68]. A linear �uid was also examined here. Stokes �ow,

which is good for creeping �ow, was used to solve a driven cavity �ow problem. This

problem had published results for comparison purposes [9]. The results matched

those published results. Incompressible and viscous Navier-Stokes equations were

then veri�ed. A Blasius plate problem was considered where the boundary layer

thickness matched. In addition, Navier-Stokes equations were veri�ed for a driven

Poiseuille �ow problem and for a manufactured problem. The next step was to

verify Euler ALE and Navier-Stokes ALE approaches. A problem with a moving

internal mesh was examined using uniform �ow. The mesh was deformed with a

prescribed transient motion. Even though the mesh deformed, the uniform �ow did

not change. This veri�ed ALE for both �uid formulations.

Nonconformal meshing was also examined. Three problems were successfully

solved using nonconformal meshes. The �rst consisted of Poisson�s problem where

the domain and the weak boundary conditions had di¤erent meshes. The second

consisted of the manufactured structural problem with the domain split into two

separate meshes that were joined in the middle through nonconformal meshing. The

third problem consisted of a steady-state FSI problem that was created using MMS.

All three problems showed accurate results even though a virtual interface was used

to match boundary conditions or to match responses in the middle of a domain.
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The next problems veri�ed were coupled FSI problems. Three steady-state

problems and one transient FSI problem were solved successfully. The �rst problem

was a driven cavity �ow problem with a �exible right wall. This problem was solved

using two-�eld and three-�eld coupled methods. Both methods demonstrated the

implementation, but no published results exist and no analytic solution was known

for comparison. For independent veri�cation, two more steady-state FSI problems

were considered with a known exact solution. A double channel �ow problem with a

known solution [74] at the interface boundary was solved successfully. The �uid �ow

was a simple driven Poiseuille �ow and the structure was a linear Euler-Bernoulli

beam. Even though this was a simple problem, residual weights were critical to

solve this multi-domain problem. The iterative residual weight balancing scheme

was required to successfully solve this problem using a simultaneous solver. The

next steady-state problem solved was a manufactured FSI solution [64]. It had

non-trivial boundary conditions and responses. It also provided a way to generate

re�nement curves for response errors, since the solution was known throughout the

entire problem. It provided a way to fully verify the LSFEM code for simultaneous

and sequential steady-state solutions. MMS was also applied to a transient FSI

problem. It had transient boundary input and non-trivial body forces and responses

throughout the system. It challenged the code�s capability and computational speed.

It too had a known analytic solution for comparison purposes. The transient FSI

problem was solved successfully using both LSFEM-LSFEM and LSFEM-WGFEM

schemes.

Overall, many problems were solved successfully using LSFEM. It was shown

that LSFEM is a capable and accurate scheme but may not always provide the most

e¢ cient method when residual weights are critical to solving a particular problem.
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9.4 Summary of Comparisons Performed

The comparisons performed within this research provided insight into the be-

havior of LSFEM for both single domain and multi-domain problems. LSFEM was

compared to other commonly used numerical methods for both structures and �uids.

Nonconformal mesh methods were compared to conformal mesh results. Residual

weight balancing was examined where multiple methods were compared to determine

accuracy and feasibility. Di¤erent shape function expansion bases were also con-

sidered when using LSFEM. Elliptic and non-elliptic formulation results were also

compared. Finally, simultaneous and sequential solution methods were compared

for coupled FSI problems.

The �rst major comparison included comparing LSFEM to WGFEM for in-

plane elasticity. It was shown that LSFEM exhibited better values and a stronger

convergence rate for the secondary structural variables. The convergence rate for

WGFEM secondary variables was typically p whereas the LSFEM secondary vari-

ables convergence rate averaged p+ 0:8351 which was nearly p+ 1, the convergence

rate shown for the primary variables for both the WGFEM and LSFEM analyses.

Although, LSFEM did show better accuracy with respect to the secondary variables,

it came at a cost of 2.5 times as many degrees of freedom. This cost provides ben-

e�t for coupled problems, such as FSI, since those secondary variables are directly

sharable within a LSFEM scheme.

Elliptic and non-elliptic formulations were also considered here. It was shown

that even though the guaranteed convergence rates for elliptic formulations is p+1,

which is one order greater than non-elliptic formulations (p), the results for non-

elliptic formulations performed just as well as the elliptic formulations. This was

shown for two structural problems. No proof currently exists to show that non-

elliptic formulations can perform as well as elliptic results, but it has been shown

here and elsewhere [15,16,18] that well-posed non-elliptic formulations may be just

as capable. In many cases the non-elliptic formulations are posed in terms of pri-
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mary and secondary variables that are useful for most boundary conditions and for

most coupled problems. Therefore, these primitive variable formulations are recom-

mended for FSI despite being non-elliptic.

With the assistance of Wickert [63], it was shown that the shape function

basis used for a FEM approximation can a¤ect accuracy and e¢ ciency of an FEM

scheme. Serendipity shape functions were compared to full-tensor product shape

functions. As expected, the serendipity expansion basis was more e¢ cient. There

are situations with the serendipity expansion basis where a higher p-value can be

used with a coarse mesh and achieve the same level of accuracy. However, when the

same p-value was used with the same mesh size, the full-tensor product expansion

basis was more accurate.

Nonconformal mesh methods were compared to conformal meshes conditions.

It was shown that the nonconformal meshing using the methods prescribed here are

accurate and comparable to conformal mesh conditions. When a problem is solved

using two di¤erent meshes, the mesh with the lower accuracy will dominate the

entire domain�s accuracy. For example, if the same p-value is used throughout, but

di¤erent mesh sizes are used, the coarser mesh will drive the error and will "corrupt"

the �ner mesh. In addition, if di¤erent p-values are used for di¤erent meshes and

the degrees of freedom are the same on each side, or if the mesh sizes are exactly the

same at the boundary, the mesh with the lower p-value will drive the error of the

entire solution.

LSFEM was compared to �nite di¤erencing for a classic airfoil �uid �ow prob-

lem. The results showed similar accuracy with respect to the pressure pro�le on

the surface of the airfoil. However, �nite volume results were shown to reach a

higher peak on the front top edge of the airfoil and matched the peak of experimen-

tal results closely. It was also shown that the LSFEM solution was very sensitive to

residual weights with respect to the �uid domain and the no-penetration boundary

conditions on the surface of the airfoil. Even though su¢ ciently accurate results
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were achieved using LSFEM, they were not quite as good as �nite volume results.

Iterative residual weight balancing methods did not work for this �uid problem, so

manual methods were used to determine proper weights. It might be a case where

the proper residual weights were not found. If they were found, LSFEM might be

as accurate �nite volume methods. On the other hand, Navier-Stokes did produce

accurate results for several individual �uid and FSI problems. Proper weights were

successfully determined using iterative residual weight balancing methods. This may

very well be a case where proper LSFEM residual weights are critical to accuracy.

If proper weights are not determined, then the accuracy of LSFEM is questionable.

It was shown that some simultaneous LSFEM problems are capable of being

solved accurately without the need to modify the residual weights. For example,

it was shown that steady-state problems with simultaneously applied weak bound-

ary conditions do not always require residual weight balancing. However, it was

shown that transient cases and multi-domain cases need properly balanced residual

weights or the problems will be completely inaccurate. Even if the problem uses

time-marching to reach steady-state solutions, residual weight balancing is essen-

tial. Manual methods, iterative methods, unit modi�cation methods, di¤erential

operator matrix normalization methods, no scaling, and move limit methods were

examined to help �nd proper residual weights. It was shown that manual methods

can work if the user already knows the solution beforehand. This is impractical

and most problems require a "hands-o¤" method to determine the weights. The

iterative method that uses domain averaging or equation pairing are the methods

that seemed to work consistently without the need to know the exact solution be-

forehand. Unit modi�cation, move limits, and matrix normalization methods did

not work. In addition, weighting at the element level and at the single equation

level will not always work as there are too many residual weights to balance. It was

also shown that for steady-state cases, sequential solutions work without weighting.

This was not necessarily the case for transient cases.
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A steady-state FSI problem was solved sequentially using LSFEM for the �uid

and then either LSFEM or WGFEM for the structure. The LSFEM-LSFEM case

has the same level of accuracy as the simultaneous solution whereas the LSFEM-

WGFEM case did not. A simultaneous solution was not considered with the

LSFEM-WGFEM case, since proper residual weights could not be determined. This

is because the WGFEM structural portion is governed by a di¤erent functional al-

together. Relative to the L2 error norm, it was shown that LSFEM-WGFEM is

accurate but not nearly as accurate as the LSFEM-LSFEM scheme.

Per Bendiksen�s proposal that simultaneous solutions are preferable to sequen-

tial solutions for FSI problems, simultaneous and sequential solutions were examined

for both steady-state and transient scenarios [19]. It was shown that for steady-state

cases that the simultaneous and sequential solutions are just as accurate and are just

as e¢ cient if the simultaneous weighting factors are known beforehand. This was

true except for a highly nonlinear collapsible tube problem where a simultaneous so-

lution was convergence whereas the sequential solution was not. If residual weights

are not already known, the simultaneous solution requires much longer processing

times in order to iteratively balance the residual weights. It was shown that the

residual weights could be balanced on coarse meshes with low p-values and then those

same weights could be used for more re�ned meshes and p-values for the same prob-

lem. It seems that avoiding residual weight balancing is bene�cial for steady-state

cases when sequential methods work perfectly well without the need for additional

processing time. For the transient scenario, simultaneous solutions were shown to

be much more accurate than sequential solutions. In fact, as time progressed, the

sequential solution deteriorated where the solution was completely corrupt after only

25 time steps. The simultaneous case stayed at the accuracy of the temporal dis-

cretization through each time step and did not deteriorate beyond 25 time steps.

This provided additional evidence that simultaneous coupled solutions do perform

better than sequential coupled solutions, at least for transient scenarios.
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9.5 Key Abilities Demonstrated That Are Traceable to Transient Gust Scenario

The joined-wing sensor-craft is considered a �grand-challenge�problem for FSI

due to its nonlinear structural and aerodynamic behavior. Solving such a challenging

problem requires a formulation with a number of unique capabilities:

1. Time-dependent nonlinear �uid dynamics

2. Time-dependent structures with geometric and follower force nonlinearities

3. Fully-coupled FSI

4. Complex model geometry

5. Time-accurate and complex mesh deformation

6. Accurately account for transient input

7. Arbitrary Lagrangian-Eulerian �uid schemes

Each of these capabilities were demonstrated successfully within this research

and showed the feasibility of solving the transient and nonlinear gust scenario prob-

lem.

9.6 Issues With LSFEM

Simultaneous solutions of multi-domain and transient LSFEM problems were

shown to be highly sensitive to residual weights. Inaccurate FSI solutions were

shown when using unbalanced residual weights. This has also been the shown for

other FSI problems solved by Kayser-Herold and Matthies [23]. Iterative residual

error balancing methods were shown to work here, but it required a signi�cant in-

crease in computation time. The iterative residual balancing scheme took 4-20 times

as many iterations to reach convergence when compared to a problem with preset

residual weights.

Historically speaking, residual weight balancing has not been an issue for analy-

sis based on energy principles. Traditional structural WGFEM solutions utilize the
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Principle of Minimum Potential Energy. In these cases, the resulting equations are

all of the same type (energy conservation only). In the LSFEM case, not all the

equations are of the same type where the conservation equations could be based

on mass, momentum, or energy. In addition, some equations in LSFEM could

simply be a relationship between a response and its derivative. LSFEM can still

utilize these equations accurately as long as matrix prioritization, that is, residual

weighting is handled properly. The advantages of simultaneous solution methods are

compromised unless the weighting di¢ culty is resolved.

LSFEM provides �exibility to the user to formulate various well-posed di¤er-

ential equations sets. This makes LSFEM capable for various types of physics.

However, it seems that simultaneous LSFEM might not always be the best method

due to the residual weight sensitivities for multi-domain problems. If no e¢ cient

"hands-o¤" method is available to determine balanced residual weights, then a multi-

domain steady-state LSFEM problem should be solved in a sequential manner. As

future work continues in the �eld of LSFEM, better methods may be created to

balance residual weights. Until then, a sequential solution seems to be the preferred

method to solve a uni�ed LSFEM FSI problem, at least for steady problems.

Finally, dissipative results were observed for high-speed compressible �uids.

This could become very problematic when considering transonic and supersonic

regimes. Other work is on-going to examine methods to handle non-smooth results

such as shocks. Jiang has examined utilizing LSFEM with h-adaptation around

shock locations. The adaptation scheme re�nes mesh sizes around shock locations

until the solution is re�ned to an acceptable level. Improved results were observed

near the discontinuities [9]. Pontaza and Reddy have begun examining a discontin-

uous least-squares solution around predicted or known shock locations can improve

responses around shocks [17].

9-11



9.7 Future Work

LSFEM is a very capable, accurate, and �exible methodology. Once it is

implemented for one type of analysis, it is less di¢ cult to add additional types.

This is the ease of using a single "black-box" that is capable of performing analysis

on both self-adjoint and non-self-adjoint equations and on both elliptic and non-

elliptic systems of di¤erential equations. Although Eason previously demonstrated

its limitation [14], Pontaza and Reddy showed great success when they increased

the p-value [18] and Jiang showed great success when reduced order integration was

used [9]. Now, it seems that LSFEM is a limited scheme when transient structural

problems and/or multiple domains are considered [23, 24]. An e¢ cient solution to

this problem is unknown at this time. An iterative solution method was shown

to work well here, but it was computationally expensive. The bene�t of LSFEM

becomes questionable if a computationally expensive iterative residual weight bal-

ancing method is required for all multi-domain and transient structural problems.

A reliable method to determine those weights is highly desirable and should be a

focus of future LSFEM research.

Additional questions that should be answered include the theoretical mathe-

matical nature of the balanced residual weights. What de�nes a correct weighting

scheme? Are the balanced residual weights obtained through the iterative method

the correct weights? Why does the residual weighting issue only arise for transient

structural and multiple domain problems? Can weights be issues for other weighted

integral methods such as Galerkin or collocation? These are questions that should

be examined in future work of LSFEM.

More problems should be solved using a simultaneously coupled LSFEM ap-

proach. A few sample transient FSI problems to consider are a typical section

airfoil [77] or a box with a �ap problem [22]. These problems could be compared to

traditional methods such as a WGFEM for the structure and a �nite volume method

for the �uid.
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The unique approach of the least-squares approach has not been successfully

applied to FSI problems before. Each unique capability required to solve the joined-

wing transient gust problem was shown to be feasible here. The goal within this

research was to show the feasibility of each of these capabilities and to compare their

accuracy to other commonly used methods. These capabilities, proven to be feasible

and accurate, lead to the detailed gust analysis of the joined-wing sensor-craft.
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Appendix A. Code Structure

The code used in this research was written solely using Matlab. Matlab provided a

great way of generating higher-order shape functions and it provided the toolboxes

necessary to post-process almost any type of response. It also had the basic comput-

ing structure useful for scienti�c computing. The code consisted of 199 subroutines

and functions. There were approximately 13,520 lines of code written.

Figure A.1 shows the code structure. This is a top-level basic description of

the code only. There are many routines that have similar functions and are named

similarly. Those functions are labeled with a "XXX" within the Figure to signify

that several naming conventions exist for that particular type of a routine.

A-1



Figure A.1 Basic LSFEM Code Structure
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Appendix B. LSFEM Di¤erential Operators

B.1 Introduction

This appendix will provide the di¤erential operators used to implement various

LSFEM types of analysis. The di¤erential operators (A) will be provided in the

form

At
@U

@t
+ A1

@U

@x
+ A2

@U

@y
+ A0U = f

where U is the vector of unknown response types and f is the vector of right hand

side values. For the one-dimensional case, A2 will not be provided since there is no

y-direction. For the steady-state case, At will not be provided since there are no

temporal derivatives. When a transient one-dimensional equation was considered, a

space-time coupled approach was sometimes used. For that situation, the At matrix

is simply converted to become the A2 matrix and the y-coordinate will simply become

a "t-coordinate". If a particular analysis type was considered using a space-time

coupled scheme, it will be noted but the new matrices will not be shown.

B.2 One-Dimensional Equations

B.2.1 Boundary Condition Application. If a boundary condition was speci-

�ed through a non-simple equation, it was typically applied weakly on a that bound-

ary wall using LSFEM. In the case where some general response (u) equals some

equation (g) at a given boundary, the relationship

u = g (x) (B.1)

is applied using the following LSFEM operators:

A1 = [0] (B.2)
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A0 = [1] (B.3)

f = fgg (B.4)

U = fug (B.5)

B.2.2 Wave Equation Elliptic Form. The elliptic form of the one-dimensional

wave equation uses the following LSFEM operators:

A1 =

24 �c 0

0 �c

35 (B.6)

A0 =

24 0 0

0 0

35 (B.7)

At =

24 0 1

1 0

35 (B.8)

f =

8<: 0

0

9=; (B.9)

U =

8<: p

v

9=; (B.10)

The responses shown here are both secondary. The primary variable (u) is a direct

response. The non-elliptic form provides the primary variables directly. The space-

time coupled form can be considered here.

B-2



B.2.3 Wave Equation Non-Elliptic Form. The non-elliptic form of the

one-dimensional wave equation uses the following LSFEM operators

A1 =

26664
0 �c 0

0 0 0

c 0 0

37775 (B.11)

A0 =

26664
0 0 0

0 0 �1

0 �1 0

37775 (B.12)

At =

26664
0 0 1

1 0 0

0 0 0

37775 (B.13)

f =

8>>><>>>:
0

0

0

9>>>=>>>; (B.14)

U =

8>>><>>>:
u

p

v

9>>>=>>>; (B.15)

The space-time coupled form can be considered here.

B.2.4 Axial Bar. A simple axial bar was considered. The LSFEM opera-

tors are

A1 =

24 AE 0

0 �1

35 (B.16)

A0 =

24 0 �1

0 0

35 (B.17)
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f =

8<: 0

faxial

9=; (B.18)

U =

8<: u

p

9=; (B.19)

B.2.5 Linear Euler-Bernoulli Beam. The steady-state form of the Euler-

Bernoulli beam equations include

A1 =

26666664
1 0 0 0

0 EI 0 0

0 0 1 0

0 0 0 1

37777775 (B.20)

A0 =

26666664
0 �1 0 0

0 0 �1 0

0 0 0 �1

0 0 0 0

37777775 (B.21)

f =

8>>>>>><>>>>>>:

0

0

0

qbend

9>>>>>>=>>>>>>;
(B.22)

U =

8>>>>>><>>>>>>:

ws

�s

M s

V s

9>>>>>>=>>>>>>;
(B.23)
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The transient form can also be completed here. The LSFEM operators are

A1 =

26666666664

1 0 0 0 0

0 EI 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

37777777775
(B.24)

A0 =

26666666664

0 �1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 �1 0

0 0 0 0 �1

37777777775
(B.25)

At =

26666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ��sIinertia
0 0 0 0 0

1 0 0 0 0

37777777775
(B.26)

f =

8>>>>>>>>><>>>>>>>>>:

0

0

qbend

0

0

9>>>>>>>>>=>>>>>>>>>;
(B.27)
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U =

8>>>>>>>>><>>>>>>>>>:

ws

�s

V s

M s

vs

9>>>>>>>>>=>>>>>>>>>;
(B.28)

The space-time coupled form can be considered here.

B.2.6 Nonlinear Euler-Bernoulli Beam. The nonlinear form of the Euler-

Bernoulli beam allows the axial direction to deform. Additional responses and

equations are required. The steady-state matrix operators takes the form

A1 =

26666666666664

EA �EA
2

0 0 0 0

0 1 0 0 0 0

0 0 EI 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 N 0 0 0 1

37777777777775
(B.29)

A0 =

26666666666664

0 0 0 �1 0 0

0 0 �1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �1 0

37777777777775
(B.30)
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f =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0

0

0

faxial

qbend

0

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.31)

U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

us

ws

�s

N s

V s

M s

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.32)

The transient form takes the form

A1 =

26666666666666666664

EA �EA
2

0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 EI 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 N 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

37777777777777777775

(B.33)
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A0 =

26666666666666666664

0 0 0 �1 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0

0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 �1

37777777777777777775

(B.34)

At =

26666666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 ��sA 0

0 0 0 0 0 0 0 ��sIinertia
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

37777777777777777775

(B.35)

f =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0

0

0

faxial

qbend

0

0

0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(B.36)

B-8



U =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

us

ws

�s

N s

V s

M s

vsx

vsy

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(B.37)

The space-time coupled form can be considered here.

B.2.7 Compressible Inviscid Euler Flow. The compressible and inviscid

Euler �ow equations takes the form

A1 =

26664
� 0 vfx

vfx
1
�

0

p
 vfx 0

37775 (B.38)

A0 =

26664
0 0 0

0 0 0

0 0 0

37775 (B.39)

At =

26664
0 0 1

1 0 0

0 1 0

37775 (B.40)

f =

8>>><>>>:
0

0

0

9>>>=>>>; (B.41)
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U =

8>>><>>>:
vfx

p

�

9>>>=>>>; (B.42)

The space-time coupled form can be considered here.

B.2.8 Pressure Equilibrium On a Beam With Top and Bottom Fluid Flow.

For a beam with a net pressure applied on the top and bottom of the structure, the

LSFEM operators are

A1 =
h
0 0 �1

i
(B.43)

A0 =
h
�1 1 0

i
(B.44)

f =
n
0
o

(B.45)

U =

8>>><>>>:
ptop

pbot

V s

9>>>=>>>; (B.46)

B.2.9 Neumann-Type Stress Equilibrium Relationships. An FSI problem

will typically contain Neumann-type boundary conditions where full stress and pres-

sure equilibrium is applied at the boundary. Fluid pressures and stresses contribute

to the equilibrium at the boundary with a structure where only the structure stresses

play a role. The net stress equilibrium uses the following LSFEM operators:

A1 =

24 0 0 0 0 0 0 0

0 0 0 0 0 0 0

35 (B.47)

A0 =

24 �nx nx 0 ny �nx 0 �ny
�ny 0 ny nx 0 �ny �nx

35 (B.48)
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f =

8<: 0

0

9=; (B.49)

U =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

p

�fx

�fy

�fxy

�sx

�sy

�sxy

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(B.50)

Another form can be considered where the net forces can be generated for each

domain. The �uid domain contains the following operators:

A1 =

24 0 0 0 0 0 0

0 0 0 0 0 0

35 (B.51)

A0 =

24 �nx nx 0 ny �1 0

�ny 0 ny nx 0 �1

35 (B.52)

f =

8<: 0

0

9=; (B.53)

U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

p

�fx

�fy

�fxy

�fx

�fy

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.54)
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The structural domain contains the following operators

A1 =

24 0 0 0 0 0

0 0 0 0 0

35 (B.55)

A0 =

24 �nx 0 �ny 1 0

0 �ny �nx 0 1

35 (B.56)

f =

8<: 0

0

9=; (B.57)

U =

8>>>>>>>>><>>>>>>>>>:

�sx

�sy

�sxy

�sx

�sy

9>>>>>>>>>=>>>>>>>>>;
(B.58)

With the net forces generated (�fx, �
f
y , �

s
x, �

s
y) for each domain, the net values can

be equated at the boundary using directly shared degrees of freedom (conformal) or

use nonconformal equality relationships.

B.2.10 Angled Velocity or Displacement Transformation. An angled wall

can provide a situation where the degrees of freedommust be converted to normal and

tangential components. A no-penetration boundary condition is typically applied

this way. Velocities or displacements can be converted using these equations using a

constant normal angle (�) or a variable angle with respect to a generalized coordinate

for that element (� (�)).

A1 =

24 0 0 0 0

0 0 0 0

35 (B.59)

A0 =

24 cos (�) sin (�) �1 0

sin (�) � cos (�) 0 �1

35 (B.60)
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f =

8<: 0

0

9=; (B.61)

U =

8>>>>>><>>>>>>:

vfx

vfy

vfn

vft

9>>>>>>=>>>>>>;
(B.62)

B.2.11 Angled Stress Transformation. Stress can also be transformed at

an angle. The LSFEM operators are

A1 =

26664
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

37775 (B.63)

A0 =

26664
(cos (�))2 (sin (�))2 2 cos (�) sin (�) �1 0 0

(sin (�))2 (cos (�))2 �2 cos (�) sin (�) 0 �1 0

cos (�) sin (�) � cos (�) sin (�) (sin (�))2 � (cos (�))2 0 0 �1

37775
(B.64)

f =

8>>><>>>:
0

0

0

9>>>=>>>; (B.65)

U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

�sx

�sy

�sxy

�sn

�st

�snt

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.66)
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B.2.12 Stress To Displacement-Gradient Relationship. When using the el-

liptic in-plane elasticity equations, a relationship that transforms stress to displacement-

gradients must be used. The LSFEM operators are

A1 =

26664
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

37775 (B.67)

A0 =

26664
E

1��2
E�
1��2 0 0 �1 0 0

E�
1��2

E
1��2 0 0 0 �1 0

0 0 G G 0 0 �1

37775 (B.68)

f =

8>>><>>>:
0

0

0

9>>>=>>>; (B.69)

U =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

H1

H2

H3

H4

�sx

�sy

�sxy

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(B.70)

B.2.13 Nonconformal Relationships. The nonconformal relationships can

have any number of degree of freedoms that are supposed to equal at a boundary

interface. The code and di¤erential operators were created such that the user can

specify any number of responses to be used within the nonconformal relationships.
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As an example, the LSFEM di¤erential operators are shown here for four responses:

A1 =

26666664
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

37777775 (B.71)

A0 =

26666664
1 0 0 0 �1 0 0 0

0 1 0 0 0 �1 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 �1

37777775 (B.72)

f =

8>>>>>><>>>>>>:

0

0

0

0

9>>>>>>=>>>>>>;
(B.73)

U =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

uA1

uA2

uA3

uA4

uB1

uB2

uB3

uB4

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(B.74)
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B.3 Two-Dimensional Equations

B.3.1 Poisson�s Equation. The non-elliptic form of the Poisson�s equation

is shown here. The LSFEM operators are

A1 =

26664
�1 0 0

0 0 0

0 �1 0

37775 (B.75)

A2 =

26664
0 0 0

�1 0 0

0 0 �1

37775 (B.76)

A0 =

26664
0 1 0

0 0 1

0 0 0

37775 (B.77)

f =

8>>><>>>:
0

0

fp

9>>>=>>>; (B.78)

U =

8>>><>>>:
u

v1

v2

9>>>=>>>; (B.79)

B.3.2 In-Plane Elasticity. In-plane elasticity can have many di¤erent

forms. First, there is an elliptic (u-H) and non-elliptic (u-�) form. Second, the

equations can be transient or steady-state. Third, the equations can assume either

plane-stress or plane-strain. The steady-state non-elliptic form will be shown �rst

for both plane-stress and plane-strain. After that, all formulations shown will con-

sider plane-stress assumptions. Then, the steady-state elliptic form will be shown.

Finally, the transient non-elliptic form will be shown.
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The steady-state non-elliptic form (u-�) of the in-plane elasticity equations

assuming plane-stress are

A1 =

26666666664

0 0 1 0 0

0 0 0 0 1

� E
1��2 0 0 0 0

� E�
1��2 0 0 0 0

0 �G 0 0 0

37777777775
(B.80)

A2 =

26666666664

0 0 0 0 1

0 0 0 1 0

0 � E�
1��2 0 0 0

0 � E
1��2 0 0 0

�G 0 0 0 0

37777777775
(B.81)

A0 =

26666666664

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37777777775
(B.82)

f =

8>>>>>>>>><>>>>>>>>>:

�fx
�fy
0

0

0

9>>>>>>>>>=>>>>>>>>>;
(B.83)
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U =

8>>>>>>>>><>>>>>>>>>:

usx

usy

�sx

�sy

�sxy

9>>>>>>>>>=>>>>>>>>>;
(B.84)

The plane-strain equations are

A1 =

26666666664

0 0 1 0 0

0 0 0 0 1

� E(1��)
(1+�)(1�2�) 0 0 0 0

� E�
(1+�)(1�2�) 0 0 0 0

0 �G 0 0 0

37777777775
(B.85)

A2 =

26666666664

0 0 0 0 1

0 0 0 1 0

0 � E�
(1+�)(1�2�) 0 0 0

0 � E(1��)
(1+�)(1�2�) 0 0 0

�G 0 0 0 0

37777777775
(B.86)

A0 =

26666666664

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37777777775
(B.87)
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f =

8>>>>>>>>><>>>>>>>>>:

�fx
�fy
0

0

0

9>>>>>>>>>=>>>>>>>>>;
(B.88)

U =

8>>>>>>>>><>>>>>>>>>:

usx

usy

�sx

�sy

�sxy

9>>>>>>>>>=>>>>>>>>>;
(B.89)

The steady-state elliptic (u-H) formulation assuming plane-stress has the fol-

lowing di¤erential operators:

A1 =

26666666666666666664

0 0 E
1��2

E�
1��2 0 0

0 0 0 0 G G

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 �1 0

37777777777777777775

(B.90)
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A2 =

26666666666666666664

0 0 0 0 G G

0 0 E�
1��2

E
1��2 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 �1

0 0 1 0 0 0

37777777777777777775

(B.91)

A0 =

26666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

0 0 0 0 0 0

0 0 0 0 0 0

37777777777777777775

(B.92)

f =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

�fx
�fy
0

0

0

0

0

0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(B.93)
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U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

usx

usy

H1

H2

H3

H4

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.94)

The transient form of the u-� formulation assuming plane-stress is

A1 =

26666666666666664

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 � E
1��2 0

0 0 0 0 0 � E�
1��2 0

0 0 0 0 0 0 �G

0 0 0 0 0 0 0

0 0 0 0 0 0 0

37777777777777775
(B.95)

A2 =

26666666666666664

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 � E�
1��2

0 0 0 0 0 0 � E
1��2

0 0 0 0 0 �G 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

37777777777777775
(B.96)
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A0 =

26666666666666664

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

37777777777777775
(B.97)

At =

26666666666666664

0 0 0 0 0 ��s 0

0 0 0 0 0 0 ��s
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

�1 0 0 0 0 0 0

0 �1 0 0 0 0 0

37777777777777775
(B.98)

f =

8>>>>>>>>><>>>>>>>>>:

�fx
�fy
0

0

0

9>>>>>>>>>=>>>>>>>>>;
(B.99)

U =

8>>>>>>>>><>>>>>>>>>:

usx

usy

�sx

�sy

�sxy

9>>>>>>>>>=>>>>>>>>>;
(B.100)

B.3.3 Stokes Fluid Flow. Stokes �uid �ow is useful for creeping �ow only.

It is conveniently a linear system of �uid di¤erential equations. Only the steady-
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state form of the Stokes equations were examined in this research. The LSFEM

operators for the v-p-! formulation are

A1 =

26666664
1 0 0 0

0 0 1 0

0 0 0 �1

0 �1 0 0

37777775 (B.101)

A2 =

26666664
0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

37777775 (B.102)

A0 =

26666664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

37777775 (B.103)

f =

8>>>>>><>>>>>>:

0

fx

fy

0

9>>>>>>=>>>>>>;
(B.104)

U =

8>>>>>><>>>>>>:

vfx

vfy

p

!

9>>>>>>=>>>>>>;
(B.105)

B.3.4 Incompressible Navier-Stokes Fluid Flow. The incompressible and

viscous Navier-Stokes �uid �ow can take two forms. The �rst form is the velocity-

pressure-vorticity formulation (v-p-!) and the second form is the velocity-pressure-
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stress formulation (v-p-�). Both forms will be shown here and were used within this

research. In addition, both forms can easily switch between transient and steady-

state form by adding or removing the temporal di¤erential operator (At). The v-p-!

formulation has the following LSFEM di¤erential operators:

A1 =

26666664
1 0 0 0

vfx 0 1 0

0 vfx 0 ��

0 �1 0 0

37777775 (B.106)

A2 =

26666664
0 1 0 0

vfy 0 0 �

0 vfy 1 0

1 0 0 0

37777775 (B.107)

A0 =

26666664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

37777775 (B.108)

At =

26666664
0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

37777775 (B.109)

f =

8>>>>>><>>>>>>:

0

fx

fy

0

9>>>>>>=>>>>>>;
(B.110)
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U =

8>>>>>><>>>>>>:

vfx

vfy

p

!

9>>>>>>=>>>>>>;
(B.111)

The v-p-� formulation has the following LSFEM di¤erential operators:

A1 =

26666666666664

1 0 0 0 0 0

vfx 0 1 �1 0 0

0 vfx 0 0 0 �1

�2� 0 0 0 0 0

0 0 0 0 0 0

0 �� 0 0 0 0

37777777777775
(B.112)

A2 =

26666666666664

0 1 0 0 0 0

vfy 0 0 0 0 �1

0 vfy 1 0 �1 0

0 0 0 0 0 0

0 �2� 0 0 0 0

�� 0 0 0 0 0

37777777777775
(B.113)

A0 =

26666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777777775
(B.114)
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At =

26666666666664

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

37777777777775
(B.115)

f =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0

fx

fy

0

0

0

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.116)

U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

vfx

vfy

p

�fx

�fy

�fxy

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.117)

The ALE approaches were also considered here. The di¤erential operators

changed for both types of formulations (v-p-! and v-p-�). The v-p-! formulation

LSFEM operators are

A1 =

26666664
1 0 0 0

vfx � vfxg 0 1 0

0 vfx � vfxg 0 ��

0 �1 0 0

37777775 (B.118)
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A2 =

26666664
0 1 0 0

vfy � vfyg 0 0 �

0 vfy � vfyg 1 0

1 0 0 0

37777775 (B.119)

A0 =

26666664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

37777775 (B.120)

At =

26666664
0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

37777775 (B.121)

f =

8>>>>>><>>>>>>:

0

fx

fy

0

9>>>>>>=>>>>>>;
(B.122)

U =

8>>>>>><>>>>>>:

vfx

vfy

p

!

9>>>>>>=>>>>>>;
(B.123)
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The v-p-� formulation LSFEM operators are

A1 =

26666666666664

1 0 0 0 0 0

vfx � vfxg 0 1 �1 0 0

0 vfx � vfxg 0 0 0 �1

�2� 0 0 0 0 0

0 0 0 0 0 0

0 �� 0 0 0 0

37777777777775
(B.124)

A2 =

26666666666664

0 1 0 0 0 0

vfy � vfyg 0 0 0 0 �1

0 vfy � vfyg 1 0 �1 0

0 0 0 0 0 0

0 �2� 0 0 0 0

�� 0 0 0 0 0

37777777777775
(B.125)

A0 =

26666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777777775
(B.126)

At =

26666666666664

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

37777777777775
(B.127)
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f =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0

fx

fy

0

0

0

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.128)

U =

8>>>>>>>>>>>><>>>>>>>>>>>>:

vfx

vfy

p

�fx

�fy

�fxy

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(B.129)

B.3.5 Compressible Inviscid Euler Fluid Flow. The compressible and invis-

cid Euler �uid �ow equations use velocity, pressure, and density as system unknowns.

Only the primal form was considered here. Similar to the incompressible form of

the Navier-Stokes equations, the transient form is simply created by adding the At

di¤erential operator. The LSFEM operators are

A1 =

26666664
� 0 0 vfx

vfx 0 1
�

0

0 vfx 0 0

p
 0 vfx 0

37777775 (B.130)

A2 =

26666664
0 � 0 vfy

vfy 0 0 0

0 vfy
1
�

0

0 p
 vfy 0

37777775 (B.131)
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A0 =

26666664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

37777775 (B.132)

At =

26666664
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

37777775 (B.133)

f =

8>>>>>><>>>>>>:

0

fx

fy

0

9>>>>>>=>>>>>>;
(B.134)

U =

8>>>>>><>>>>>>:

vfx

vfy

p

�

9>>>>>>=>>>>>>;
(B.135)

The ALE form was also considered here. The operators are

A1 =

26666664
� 0 0 vfx � vfxg

vfx � vfxg 0 1
�

0

0 vfx � vfxg 0 0

p
 0 vfx � vfxg 0

37777775 (B.136)

A2 =

26666664
0 � 0 vfy � vfyg

vfy � vfyg 0 0 0

0 vfy � vfyg
1
�

0

0 p
 vfy � vfyg 0

37777775 (B.137)
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A0 =

26666664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

37777775 (B.138)

At =

26666664
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

37777775 (B.139)

f =

8>>>>>><>>>>>>:

0

fx

fy

0

9>>>>>>=>>>>>>;
(B.140)

U =

8>>>>>><>>>>>>:

vfx

vfy

p

�

9>>>>>>=>>>>>>;
(B.141)
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Appendix C. Synthetic Elasticity Problem Exact Solution

The exact solution for the manufactured elasticity problem is shown here. A some-

what horizontal displacement �eld was assumed, i.e.,

usx = (7x+ x7)cos(�y) (C.1)

A vertical displacement was found such that f sx would equal zero by utilizing the

force equilibrium equations. The vertical displacement was found to be

usy =
1

�E� �G+G�2

 �
1
8
(�G�2 +G�2�2)x8 + 7Ex6 + 1

2
(�7G�2 + 7G�2�2)x2

�
�sin(�y)

!
(C.2)

The body forces are the left over right hand side values from the equilibrium equa-

tions. The horizontal body force was

f sx = 0 (C.3)

and the vertical body force component was determined to be

f sy =
E

(1� �2)

�
1

E� +G�G�2
(
�
�1:2337G+ 1:2337G�2)x8

�
x2sin(�y)�

�

+
E

(1� �2)

�
7Ex6 + (�34:5436G+ 34:5436G�2)

�
x2sin(�y)�

��(7 + 7x
6)sin(�y)�

E� +G�G�2

+G(�7� 7x6)sin(�y)�

� G

E� +G�G�2
(7(�9:8696G+ 9:8696G�2)x6 + 210Ex944� 69:0872G+ 69:0872G�2)

�sin(�y)
(C.4)
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The stresses were de�ned through the stress-displacement relationships The hori-

zontal normal stress component was

�sx = �
E

(1� �2)

��
�

E� +G�G�2

��
1

8
(�G�2 +G�2�2)x8

�
cos(�y)

�

� E

(1� �2)

�
7Ex6 +

1

2
(�7G�2 + 7G�2�2)x2

�
cos(�y)

+
E

(1� �2)
(7 + 7x6)cos(�y) (C.5)

The vertical normal stress component was

�sy =
E

(1� �2)

�
� 1

E� +G�G�2
+ �(7 + 7x6)cos(�y)

�

+
E

(1� �2)

�
1

8
(�G�2 +G�2�2)x8 + 7Ex6 +

1

2
(�7G�2 + 7G�2�2)x2

�
cos(�y)

(C.6)

Finally, the shear stress was determined as

�sxy = �G(7x+ x7)sin(�y)�

� G

E� +G�G�2
((�G�2 +G�2�2)x7 + 42Ex5 + (�7G�2 + 7G�2�2)x)

�sin(�y)
(C.7)
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Appendix D. Method of Manufactured Solutions Applied to Fluid

Structure Interaction Problems

The derived equations for the MMS FSI steady-state problem is shown here. The

problem assumed that the �nal deformed boundary coordinates would be

1 + h (1� cos (2�x)) (D.1)

on the top wall of the �uid domain (Figure D.1). The horizontal displacement was

assumed to be

usx = �
y

4
(D.2)

The vertical displacement �eld was created such that the boundary deformation

matched the bottom wall of the structural domain, i.e.,

usy = (1� y)h (1� cos (2�x)) (D.3)

A value of h = 0:03 was assumed for this problem. The stresses relationships are

then determined from the displacement equations:

�sx = �
1

165
+

1

165
cos(2�x) (D.4)

�sy = �
2

33
+
2

33
cos(2�x) (D.5)

�sxy = �
5

22
+
20

11
(0:03� 0:03y) sin (2�x)� (D.6)

A velocity �eld was created such that the divergence was zero across the en-

tire �uid domain. In other words, mass continuity was forced throughout. The
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horizontal velocity was determined as

vfx = (k + 1) y
k (f � y)� k(yk�1) �

�
f 2

2
� y2

2

�
(D.7)

and the vertical velocity was determined to be

vfy = yk (f � y)
@f

@x
(D.8)

where the value k is an integer value picked by the user. A value of k = 1 produces

a symmetric wall on the bottom of the �uid domain and a value of k � 1 produces

a no-slip wall. A value of k = 2 was selected for this problem. The velocities were

determined to be

vfx = 3y
2(1:03� 0:03 � cos(2�x)� y)� 2y

�
1

2
(1:03� 0:03cos(2�x))2 � 1

2
y2
�
(D.9)

vfy = 0:06y
2 � (1:03� 0:03cos(2�x)� y)sin(2�x)� (D.10)

The relationships for � and p were created by enforcing equilibrium at the boundary:

�
2�
@u

@x
� p

�
nx + �

�
@u

@y
+
@v

@x

�
ny = �sxnx + �sxyny (D.11)

�

�
@u

@y
+
@v

@x

�
nx +

�
2�
@v

@y
� p

�
ny = �sxynx + �syny (D.12)

This generates � and p as functions of only x:

� = �2500000=11(14100sin(2�x)� + 900sin(2�x)�cos(2�x)� 62500 + 225�2

�225�2cos(2�x)2 � 54sin(2�x)�3 + 54sin(2�x)�3cos(2�x)2)=(66306250000

+477405000�2�477000000�2cos(2�x)2�3862500000cos(2�x)�27810000cos(2�x)�2

+27810000cos(2�x)3�2 + 56250000cos(2�x)2 � 405000cos(2�x)4�2 + 859329�4
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Figure D.1 Plot of Boundary Deformation

�1717929�4cos(2�x)2 + 857871�4cos(2�x)4 � 50058�4cos(2�x)

+100116�4cos(2�x)3 � 50058�4cos(2�x)5 + 729�4cos(2�x)6) (D.13)

p = �1=165(2709�2 � 2709�2cos(2�x)2 � 9cos(2�x)�2 + 9cos(2�x)3�2

�11250sin(2�x)�+25000� 25000cos(2�x))=(�2500� 9�2+9�2cos(2�x)2) (D.14)

Figures D.2 and D.3 show the plots of � and p, respectively.
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Figure D.2 Plot of Viscosity

Figure D.3 Plot of Pressure
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